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ABSTRACT

The possible dc states of a one-dimensional plasma diode are

analyzed. This diode consists of opposing thermionic ion and electron

emitters in parallel-plane geometry. The emitters can have different

temperatures. The assumptions of nonreflecting boundaries and complete

lack of collisions are made. Electrons and ions are assumed to be

generated with half-Maxwellian velocity distributions corresponding to

their respective temperatures.

For the case of nonnegative potential of the ion emitter with

respect to the electron emitter all possible dc states are found. It

is shown that if the continuity of the spatial derivative of the space-

charge function is required in the diode space, then only one self-

consistent dc state is possible for a diode with a given applied

potential across it. This dc state is called the "basic solution."

Neither Maxwell's equations nor the collisionless, steady-state

Boltzmann equation require the continuity of the derivative of the

space-charge function. If discontinuities in this derivative are

permitted, spatially periodic dc states also become possible solutions

for some diodes. Curves are given for the determination of the possJble

presence of periodic solutions in an arbitrary opposite-stream diode.

The characteristics of periodic dc states are computed with similar

numerical methods as used for basic states.

The derivative of the space-charge function does not enter into

the strict dc problem; however, if it is discontinuous then a small

amount of collisions would give rise to large diffusion currents, thus

destroying this discontinuity. Even in a strictly collisionless model

a small rf perturbation would affect the periodic dc solution in a

similar manner through the process of phase mixing. Thus; dc solutions

with discontinuous derivatives of their space-charge functions are

expected (and found) to be unstable.

The stability of the dc states is examined by simulating the

motions of the electrons and ions on a computer. The computer model

showed that under time-varying conditions the basic solution is formed

and that it is in qualitative and quantitative agreement with the
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results of the forementioned dc calculations. The fluctuations present

in the model are due only to shot-noise effects. When the periodic

solution is set up in the diode model initially, it changes rapidly

into the basic solution, showing that the discontinuous derivative of

the space-charge function makes this dc solution highly unstable.

Characteristics of this computer diode and the step-by-step transforma-

tion of the periodic state are shown.

An experimental model of the opposite-stream diode is constructed

with a solid-state, thermionic, lithium-ion emitter and a barium-oxide-

coated electron emitter. The current vs voltage characteristics of

this diode agree with the theoretical values predicted for the basic

solution, if the contact potential of the emitters is taken into account.

The contact potential is determined by comparing the experimental data

with the predicted current values that should flow theoretically in

the diode when the applied potential is zero.
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I. INTRODUCTION

Direct-current theories for charged particle flow between two plane

electrodes have been developing for over 60 years. The development

began with the formulation of Child's law, which was the direct conse-

quence of the law of the electrons' motion in a steady electric field

and of Poisson's equation. _his simple law of single-velocity electrons

was the starting point of extensive analysis of more complicated situa-

tions.

The addition of ions to the simple electron diode was made, retain-

ing the assumption of single-velocity particles. Langmuir [Ref. 1] and

later M_ller-L_beck [Ref. 2] made extensive calculations of the charac-

teristics of a parallel-plane diode consisting of cold, opposed electron

and ion emitters. In their analysis both kinds of particles were emitted

with zero velocity while assuming unlimited current densities of the

emitters (space-charge-limited operation). The Langmuir and M_ller-

L_beck analyses showed a 3/2-power law between voltage and current such

as that of Child's law. However, the factor of proportionality (i.e.,

perveance) of this electron-ion diode was found to be 1.86 times larger

than the perveance factor of the simple electron diode.

Temperature effects must be taken into consideration for physically

realizable diodes. The theory of a thermionic electron diode has been

worked out by many authors. An excellent summary of this work can be

found in Langmuir and Comptonts paper [Ref. 3], and highly accurate

numerical results for their work were calculated by Kleynen [Ref. 4].

In the development of the theory of the double sheath, Langmuir

went a step further when he considered hot electrons and cold ions

emitted from the same plane in a paraii_i-plane diode. He gave a de-

tailed discussion of this system, including periodic types of solutions

[Ref. 5].

In the last few years several papers have dealt with one or more

aspects of plasma diodes; most of them have included temperature effects

of the particles. A theory of dc states with thermionie emitters was

presented by Auer [Ref. 6], and later by Mclntyre [Ref. 7]. This theory
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dealt with hot-ion and hot-electron emission from the sameplane and

considered most of the possible dc cases--though Mclntyre did not include

the possibility of periodic solutions shown by Auer.

A paper by McIntyre [Ref. 8] deals with the hot three-stream diode

which has electron and ion emission from the cathode and electron

emission from the anode. The two emitting planes have different tem-

peratures. He considers ten important de cases, shows transitions

between these, and discusses periodic types of solutions. Some of these

dc states would coincide with the ones presented in this paper if elec-

tron emission from the cathode of his model could be neglected. Aside

from the fact that there is no simple way of neglecting this electron

emission, McIntyre_s aims were different from ours. Consequently, we

arrived at different conclusions.

Further studies aimed at specialized applications may be mentioned,

e.g., the work of Auer and Hurwitz [Ref. 9] or the paper by Eichenbaum

and Hernquist [Ref. i0].

The most general case of a parallel-plane plate, thermionic diode

is the "four-stream" diode, which allows for both ion and electron

emission from both planes and for different emission temperatures at

these planes. The number of independent parameters for this problem is

six. To work out a complete theory, which includes all possible dc

solutions for this general case, would be too laborious and of doubtful

value.

Since our first aim was to find a complete theory, the simpler model

of the opposite-stream diode was selected and is shown schematically on

Fig. I. This model has the advantage that it could be approximated

fairly well by an experimental device and yet it is simple enough for a

tractable theoretical analysis. If allowance is made for different

temperatures of the emitters, we find that four independent parameters

are sufficient to determine the problem (see Sec. IIIB). The two-

stream diode is a good approximation to a real diode only for positive

voltages on the ion emitter. At decelerating potentials, electron

emission from the ion emitter and ion emission from a possible ion

surface layer at the electron emitter could become important, hence the

general four-stream diode has to be studied.

SEL-64-012 - 2 -
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FIG. 1. MODEL OF THE OPPOSITE-STREAM

DIODE. The symbols f(Ueo ) and f(Uio )
represent the velocity-distribution

functions of the emitted electrons and

ions respectively. Both functions are

of half-Maxwellian types, with electron

temperature T and ion temperature T..
e 1

Once the dc states are known, their stability can be determined by

simulating on a computer the model of our one-dimensional plasma diode.

We have developed a complete dc theory for the opposite-stream diode,

therefore we can determine the stability of all the possible dc states

of this device by using the forementioned computer model. To do this,

we need to calculate the self-consistent dc states of our model by

numerical integrations. A procedure for these calculations is presented

in Chapters III and IV.

There is a further advantage in determining the exact dc charac-

teristics of our diode. The obtained theoretical data can be compared

with measurements made on an experimental opposite-stream diode. The

construction of this diode became possible when a thermionic, lithium-ion

emitter was developed in our laboratory. The experiment is described

in Chapter VII.

The following representative case of an opposite-stream diode was

chosen to demonstrate the theoretical results. (This example will be

used throughout the dc theory whenever it becomes necessary to demonstrate

results or procedures for a typical diode.) This representative diode

has the following construction:

- 3 - SEL-64-012



Electron emitter:

Ion emitter:

Ions:

Separation of emitters:

Temperature: 1200 °K
Saturation current density:
Temperature: 1400 °K
Saturation current density:
Lithium

0.2 cm

0.I amp/cm2

1 ma/cm2

In Fig. 2 the predicted voltage-current characteristic of this

particular diode is compared to that of other diode models. The "cold
electron diode" exhibits Childts law. The "cold electron + ion diode"

also has a 3/2-power law between current and voltage.

Wealso show the V-I characteristic of the temperature-corrected

pure electron diode. Although the characteristics of this diode can be

determined from Kleynen's tables [Ref. 4], the numerical procedure

described in this report was used to determine both this curve and the

V-I characteristics of the opposite-stream temperature-corrected diode.

The curves are shownon a "perveance diagram" with 3/2_power scale for
voltage, so that the curves representing the two diodes with single-

velocity particles appear as straight lines.

Wewill also examine the stability of the found dc states by simu-

lating this diode on a computer, and finally compare the results to the

characteristics of an experimental opposite-stream diode which has the
operating parameters listed above.

SEL-64-012 - 4 -
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II. CHARGED PAR]ICLES THERMIONICALLY EMITTED

INTO A DC POTENTIAL FIELD

A, FORMULATION OF THE PROBLEM

As a first step we want to calculate the space-charge contribution

of one kind of charged particle to the total space charge when these

particles are emitted thermionically into an evacuated space. This

contribution is given by an integral of the particles t velocity-

distribution function; therefore we solve an equivalent problem by

finding the velocity distribution of the emitted particles as a function

of potential. We use parallel-plane geometry and assume that some dc

potential as some function of distance is set up between the two end-

planes.

For convenience, the emission of these particles is taken to occur

at the left plane with a given velocity distribution (see Fig. 3).

Both planes absorb incoming particles. Since we neglect any type of

collision in the diodes, it is clear that once the dc state is set up

the velocity-distribution function of the emitted stream has to satisfy

the collisionless, static BoltzmannWs equation with boundary conditions

Potential

Velocity
distribution of

emitted
particles

Vl =V(O)
V,x_

,V2=VCd)

Distance

Emitter Collecto_ )

d = separation distance

FIG. 3. THE SYSTEM FOR CALCULATING THE SPACE-CHARGE

CONTRIBUTIONS OF ONE KIND OF PARTICLE. The parti-

cles are emitted at the left plane with a velocity-

distribution function f(u). The potential

distribution in the diode is arbitrary.
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given at the two planes. As stated before, no reflection occurs at the

boundaries, therefore the distribution function of the particles must

be asymmetrical: there will be velocity classes which do not appear in

the distribution function.

The form of the velocity-distribution function of the emitted

particles will be determined in a general manner. In the next chapter

we will use the results of the following analysis for solving our

opposite-stream diode problem.

B. THE INTRODUCTION OF SYMBOLIC FUNCTIONS

There are several ways to arrive at the expressions of the contri-

butions to the space charge of the particles, which are necessary to

the numerical calculation of the problem. The commonly used method is

to follow velocity classes of the particles and separate them into those

which return to their respective emitting planes and those which escape

at the opposite side (see for example Ref. 5). This procedure could be

quite laborious for the general four-stream diode with a complicated

potential function, and not much general information could be extracted

from it before solving the problem with Poisson's equation simultane-

ously. Also, it is not clear that the solutions arrived at by this

method are solutions to the collisionless Boltzmann equation. A

different approach will be used here.

The emitted particles have a velocity-distribution function

f(u)[O < U < +oo], a charge "q," and a mass "m." (See Fig. 3.) Our

first observation is that conservation of energy sets up a restriction

on the velocity-distribution function of the particles. At every point

in the diode where returned particles are present, the equality

f(u) = f(-u) must hold under our assumptions. On the other hand, as

mentioned earlier, one cannot exclude the possibility of missing veloc-

ity classes. In order to account for this possibility, the general

form of the distribution function of the particles inside the diode

could be represented by an even function of velocity multiplied by

some kind of "cutoff" function. The latter has the property that it

is "one" in some intervals and "zero" elsewhere (Fig. 4). It is

auite evident that we are able to use here the powerful mathematical
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f(u)

Even function of u

f(u)

[ I'tl
Ul U Z U 3

Cut-off function of u

fz(U)

U I U 2

General form of distribution function

fl (u). fz (u)

U3

FIG. 4. THE FORM OF THE VELOCITY-DISTRIBUTION FUNCTION

OF THE EMITTED PARTICLES UNDER COLLISIONLESS, DC

CONDITIONS FOR A COMPLICATED DIODE. The parameters

u , u 2 and u_ are functions of the position. For

t_e opposite-s_ream diode, u 2 = u 3 = O; but u I can

be positive or negative depending on x.

tool of symbolic functions: the Dirae delta function 5(x) and its

integral--the Heaviside unit function [Ref. ii]. The latter is

denoted by h(u), with the known property:

h(u) = 0 for u < 0 J.

h(u) = 1 for u > 0

(i)

These symbolic functions are defined only through an integral over

the range -co < u < +m. This definition agrees with the physics of

SEL-64-012 - 8 -



the problem since all physical quantities (space charge, electric field,

etc.) are defined by integrals of the distribution functions.

C. THE VELOCITY-DISTRIBUTION FUNCTION OF THE EMITTED PARTICLES

Now that we know the general form of the distribution function in

its dependence on velocity, we are ready to substitute it into the time-

independent, collisionless Boltzmann equation, which has the form

u _f(u,X)_x + --mqE(x) _f(u,X)_u = 0 (2)

where E(x) is the dc electric field defined by E(x) = -dV(x)/dx.

The diode space can be divided into a finite number of regions,

in each of which the potential V(x) is a monotonic function of

distance. For any one of these regions V(x) is a unique function;

therefore one can write the velocity-distribution function as a function

of u and V instead of u and x. To do this, the following

relation is used:

 f(u,x)  f(u,v) dV  f(u,V) (3)
5x - _V dx - 8V

Let us introduce two normalized quantities.

potential:

_n(X ) A= kTqn (V(x) - Vn)

n

We define a normalized

(4)

where T
n

and V are the temperature and the potential of the emitter
n

respectively,

species n.

that nn(X )

k is Boltzmann's constant, and qn is the charge of

The subscript "n" distinguishes between species. Note

has the sign of potential energy of the particles regard-

less of whether they are ions or electrons.

This normalization procedure refers to one stream only. The

subscript n is used here to show this fact. In Chapter III we will

refer to the different normalizations used for ions and electrons by

- 9 - SEL-64-012



qi' qe; and later on will introduce a uniform normalization procedure
for both streams [see Eq. (26)]. Wenormalize velocity also:

m 2- nv = u (5)
n n

.......... be a corresponding change in the scale of f(Vn,q n)

because of the condition qn f f(Vn'qn) dVn = Pn(qn) where Dn(qn)
-<_

is the space-charge density of the particles. This condition will be

satisfied by the choice of the constant of proportionality of f(Vn,qn)

[see Eq. (14)]. Substituting Eqs. (3), (4), and (5) into Eq. (2) gives

_f(Vn,qn) _f(Vn,qn )

- o (6)n 3q _v
n n

The solution of this first-order, partial-differential equation is

F(v 2 + ), which represents an arbitrary continuous function of its
n q n

argument. This result gives the even-function part of the solution

which we were looking for. We still have to incorporate our cutoff

function into the solution. We take the functional form of f(Vn,qn)

to be the product of an even function of v : F(v 2
n n + qn ) multiplied

+ Vno(qn) ] [see Eq. (7)]by the cutoff function h[v n

f(Vn,qn) = h[Vn + Vno(qn) ] F(Vn2 + qn ) (7)

We proceed to find the unknown function Vno(qn) that satisfies the

differential equation. By substituting Eq. (7) into Eq. (6), the

2 + q ) cancel and the following expression remains:terms containing F(v n n

dVno(_n ) ]5[v + v (qn)] 2v 1 = 0 (8)
n no n dqn

SEL-64-012 - 10 -



In symbolic representation 5(u - Uo)

this relation, the differential equation for

from Eq. (8).

f(u) : f(Uo). By using

Vno(_n) is determined

Vno(_n) = -i (9)2v no d_]
n

After integrating Eq. (9), the form of Vno(_n) becomes:

(I0)Vno(qn) = ±¢qno - qn

where qno is a constant.

Looking for other forms of the velocity-distribution function of

the particles, one can prove that the function F(v 2
n + Qn ) itself does

not have to be continuous. It can contain a step function of the form

2 (qnr- _n )]' where _nr < _no' _nrh[v n - and is a local extremum

in the diode. In the opposite-stream diode this form never appears,

but for the sake of generality, this function is included here. With

the forms mentioned, all the possible forms of velocity-distribution

functions have been exhausted for any one of the streams in a one-

dimensional plasma diode. We have assumed nonreflecting boundaries,

collisionless flow, and particle emission at one of the boundary planes

only. For these conditions, any one stream can have only three basic

forms of the velocity-distribution function. These are:

i. f(Vn'_n) = h[Vn -_no - _n ] F(yn2 + _n )

2. f(Vn'_n) : h[Vn +¢_no - _n ] F(Vn 2 + _n )

3. f(Vn,qn ) h[Vn 2= + qn - _nr ] h[Vn

9

+¢qno - _n ] F(Vn- + _n )

(ll)

The constant _no is the same throughout the diode space, but _nr

is a constant only in an interval. At both ends of this interval

_n must be equal to _nr in order to insure continuity of the space

charge in the diode.

ii - SEL-64-012



Wecan observe that in any one of the monotonic regions the distri-

bution function f(Vn,_n) depends only on the particles' total energy
(v2 + _) and on the direction of the velocity of the particles (in the

sense that one must know the direction of their motion in order to tell

about the cutoff of their distribution function).

D. CHOICEOFDISTRIBUTION-FUNCTIONFORMS

It can be seen already that it was an advantage to approach the

problem with the help of symbolic functions. Even in the most general

case one could narrow the numberof possible forms of the velocity-
distribution functions to three. Unfortunately, the numberof possible

combinations of four streams with three different forms of distribution

functions is 819 still too large a numberto handle without finding
conditions to rule out somecombinations of these forms. Our problem

is simplified since the two-stream diode does not allow the third form

in Eq. (Ii).

Note that the first two forms appearing in Eq. (ii) differ only by

_ _ign. Since it is necessary to use only these two forms of the distri-

bution function, we will distinguish between them by the superscripts

(+) and (-). Using this notation we can write:

+ 2

f-(Vn,'In) = h[Vn +_i- no - _n ] F(v n + 71n ) (12)

Our task is to determine the signs applicable for the streams for all

the regions in the diode. We know that p(x), the space-charge density

function of the stream, has to be continuous in space. This condition

requires that the velocity-distribution function cannot be changed from

one form to another at an arbitrary point in the diode. We can change

• and
form 1 of Eq. (ii) to form 2 only at the point where _n = _no'

form 2 to form 3 only where _n = Tlnr" In our case when we do not have

to make the latter change, the points where

the end points of the monotonic regions of

form of f(Vn,_n), is not made, then p(x)

continuous.

qn = _no will always be at

_n(X). If a change in the

will be automatically
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To choose between the two forms, one observes that _n is always

less than or equal to _no (see Fig. 5). The immediate consequence is

that returning particles can be present only between the emitting plane

and the plane where _n = _no' In this region, therefore, one has to

use the form with the (+) before the square root. Everywhere else the

first form is applicable (see Fig. 5a). This assignment of the forms of

the distribution functions has to be made separately for each stream.

One must remember that the normalization factor in Eq. (ii) contains

--a

%

Normalized Potential

f+(=,) I. f-(v)
I

Distance
(x)

Emitter C ollector

a. The basic solution

._ Normalized

(,7)

f+(v) i=

%

Potential

f-(=')

Emitter

Distance
(x)

Collector

b. The periodic solution

FIG. 5. THE CHOICE OF THE FORM OF THE VEIl)CITY-

DISTRIBUTION FUNCTION OF ONE KIND OF EMITTED

PARTICLE IN THE OPPOSITE-STREAM DIODE. The

potential and the velocity are normalized with

respect to the kind of particles emitted. The

choice of the form is shown for the basic and

the periodic solutions.
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the sign of the charge of the particles and therefore _no will repre-
sent the most negative potential in the diode for the electrons, and

the most positive potential for the ions.

It has been assumed until now that the normalized potential func-

tion In(X) takes up the value _no only once in the diode. If this

is true for both ions and electrons, we call the solution "basic." Let

,,_____.._=_,,_+_a+_,,_ the dc pu_,L±_x-^*...... function takes the value Tlno more

than once in the diode, or to be more specific, that it is periodic in

space (see Fig. 5b). The first extremum will still act as a potential

barrier, but the other points where _n = _no will have no such role

because there could be no returning particles of this stream where these

extrema are. Following this argument with the choice of the form of

the distribution function, it is seen that f(Vn,_n ) will change from

f+( ) to f-( ) at the first extremum but will not change afterward.

This difference between the first extremum and succeeding ones implies

directly the important difference between basic and periodic types of

solutions. Boltzmann's equation can be satisfied by requiring the

continuity of the space charge as a function of distance. Since Eq. (6)

is a first-order differential equation, we cannot set an arbitrary

value for dp/dx , and we cannot even enforce continuity of dp/dx if

the boundary values of the equation are given. This derivative is

determined by the equation and the boundary conditions. The following

analysis will show that the continuity of dp/dx depends directly on

this change of the form of the distribution function at the extremum

point.

Now that we know the form of the velocity distribution of the

particles in the diode, we can calculate their contribution to the space

charge with a simple integration Pn(Tln)-- = qn f-_ f(Vn'_In)dr-- n" This

final step is postponed to the next chapter, which deals with the

opposite-stream diode explicity.
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III. THE BASIC SOLUTION

Now that we are equipped with the expressions for the velocity

distributions of the emitted streams, these results can be applied to

the two-stream diode. It has already been mentioned that the opposite

two-stream diode has physical meaning only when there is an accelerat-

ing voltage applied on the diode or when the temperature difference of

the two emitting planes is very large. We arrived at this conclusion

from the Second Law of Thermodynamics since we know that when there is

no potential difference across the diode and no temperature difference

between the planes, no current can flow. This condition could be satis-

fied only with the general four-stream diode.

A. THE FORMAL SOLUTION

As shown in the preceding chapter, the distribution functions of

the streams can be expressed conveniently with symbolic functions.

Since thermionic emission is assumed, the emitted particles will have

half-Maxwellian velocity distributions at the plane _ = O. So the
n

general form of the distribution function will be:

= + _]no - _]n ] exp (-v 2f+(Vn'qn) Cnh[Vn - n - qn ) (13)

where C is a constant. The normalization for the two streams will
n

be different, but the functional form of their distribution functions

will be given by Eq. (13). The Constant C is related to the satura-
n

tion current of the emitter, but instead of using current density it is

more convenient to define equivalent number densities for both streams by

N
n

c - (14)
n

where N is the number density of the full-Maxwellian distribution at
n

the source. With this choice the ratio of electron-to-ion masses in the

equations is eliminated. The relation between the experimentally

measured, saturation-current densities and the number densities defined

above is given by
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kT
n

Jn = Nnqn 2_m
n

(1,5)

where the subscript denotes either ions or electrons. One can go still

further in this general manner (applicable for more than two streams)

by calculating the space-charge contribution of one such stream as a

function of the normalized potential:

cO

Pn(_n ) = qnS f(Vn'Tln)dVn

co

Nnqn/ h[Vn +-_dno_ - qn ] exp (-v 2
_ -oo n

- qn) dv (16)

Equation (16) can be integrated by introducing the following functions:

÷
F-(q) = exp (_) (i.0 ± erf _]) (17)

where

0 x 2
2

erf (_.X. = e dt (18)

Using Eq. (17) in Eq. (16), the space charge due to the two streams is

found to be:

N
e +

Pe(qe ) = qe 2-- exp (-qeo) F-(_eo - qe ) (19)

N.

1 +

Pi(_i) = qi _- exp (-qio) F-(T]io - qi ) (20)

In our case the total space charge will be just the algebraic sum of

Eq. (19) and Eq. (20).
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Using Poisson's equation, d2V/dx2- = - p/Co, one can integrate once

to obtain

2 2

E2(V) - % f Pi(hi)dV - _0 f Pe(he) dV (21)

where E(V) is the electric field.

The stress balance for our model is expressed by Eq. (21).

+
functions F-(_ ) are integrable:

The

(22)

The normalization for the two streams, given by Eq. (4), is

h. - qi,e (V. - V) (23)
l,e kT. l,e

l,e

where V. is the potential of the ion and electron emitters respec-
l,e

tively. This reduces Eq. (21) to

+
k T. exp (-qio) G-(hio -h i )

E2(V) = _0 Ni I

+ NeTe exp (-qeo) G±(qeo_ qe ) + constant
(24)

where the subscripts refer to the different normalization factors of the

two streams.

The problem has now been reduced to a quadrature which gives the

separation distance as the function of potential:

V

x(V) = / dV

Vl [_2(V)]i/2 (25)
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Equation (25) is a formal solution only, since we have to decide

where to use G+(_) or G-(_). For this we would have to know the

form of the potential function in the diode (_io' _eo are not given).

But how could we ensure that for an assumed potential function we could

adjust the arbitrary constants in Eq. (24) in such a way that the total

integral will give the separation distance of the diode? The constants

9,

are not completely arbitrary since E-(V) cannot be negative in the

diode space.

Fortunately, the choice of the form of the potential function for

the two-stream diode is simplified. We will show shortly that only four

basic forms could be present.

B. NORMALIZATION FOR THE TWO-STREAM DIODE

At this point it is convenient to introduce a general normalization

procedure that takes both streams into account. When one of the

saturation-current densities becomes zero, the normalization should be

the same as in Eq. (4). This suggests the definition of the following

quantities:

Number density: N = N. + N
1 e

--A
Temperature: T --

NT + NT
e e i i

N + N :'26'e i

Debye length:

For convenience we take the potential to be zero at the electron

emitter and define the normalized potential as: _ = (e/k_)V. If we

call the most positive potential in the diode _M and the most negative

_Im' these will be related to _eo' _io which were defined in the preced-

ing section as follows:

¥ ¥ ( IM- ) (27)_eo = _- _m; _io - T
e i
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where _2 : [e/kT)V2 and V 2 is the true potential difference across the

diode in volts. The distance measured from the electron emitter can be

normalized by the defined Debye length of the diode:

Even though they are not independent, four characteristic constants

for the problem are defined as follows:

LE NTe e LE N.T.i I

e NT i NT

LET LET
_e = T-- ; Gi - T.

e 1

(29)

There are two identities between these four quantities:

a +_. = l; + = 1 (30)e z C_eBe C_i_i

Therefore only two of the four are independent, and all four can be

calculated from two independent ratios of the physical data of the diode.

These ratios are

uJ TTse e

=T- ; _- ,j_31_
si i

The relations between _e' _e' C_i' _i

G
e

i

and _,_ are:

(32)
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For easier identification 7 is used for the arbitrary constant
of E2(_). If the quantities defined in Eq. (32) are used, the normalized
electric field will have the form

2
exp [-_i(._M - _2)] G-+[_i(TIM- _)]

a"r r ._+ (_e exo. (B.,e _'m' _ _ . (n -n,m)] + 7' _oo]

In the normalized form the space-charge function is expressed by the

relation

p - aiBi2 exp M - F-+[ i(TIM -

(_e_e

2 exp (_e _]m ) F+[_e (_ - Tlm)] (34)

And then the formal solution of the problem is

.fO _1 dTl
(_) = [_2(_)]1/2

(35)

C. FOUR TYPES OF THE BASIC SOLUTION

Our next task is to prove that only four different types of the

potential function can exist in our diode.

i. Type D Solution

First, we assume that an arbitrary dc potential function of the

basic type is present in the diode. Let us take the case when _M _ _2'

_m < 0 (see Fig. 6). It was shown earlier that returning particles can

be present only between the current-limiting extremum and the emitter.

This is true for both streams separately. If the potential minimum is

near the electron emitter and the maximum near the ion emitter (see

Fig. 6), there will be no returning particles of either kind in the

region _m _ _ _ _M (region II). In the regions near the emitters,

returning particles of only one kind are present. Consequently, there

are no regions in the diode where both kinds of particles are traveling
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in both directions. This means that the third type of the velocity-

distribution functions [Eq. (ii)] cannot apply for either stream when

the assumed potential function is present. The other two types, f+(v)

and f-(v), can be assigned to the streams by following the discussion

in the preceding chapter. This assignment will result in a monotonically

increasing, space-charge function in the whole diode space. Since space

charge is a monotonic function of distance in the diode, the potential

function has to be monotonic in the three separate regions, and we have

determined the shape of the potential function. This potential is

denoted as the type D solution.

%

A7

I REGIONS /,,

i',/,
_n "--'_'_ TYPE D

REGIONSf_7 zI l, I[

TYPE B

ELECTRON RICH

-,/,._o
7. = "/=

7'/

REGION

TYPE A

%

_z

_7

REGIONS--_'_

TYPE C

ION RICH

FIG. 6. THE FOUR BASIC TYPES OF POTENTIAL FUNCTION IN THE

OPPOSITE-STREAM DIODE. The space-charge function, as a

function, of potential, is expressed differently in the

three different regions, but it is continuous in the diode.

- 21 - SEL-64-012



The foregoing analysis assumes that the potential maximum is

near the ion emitter and the minimum is near the electron emitter. This

is the only possible form of the potential function when _m < 0, QM > _2"

If the positions of these extrema are interchanged, returning particles

of both kinds will be in the middle of the diode. This interchange, how-

ever, is not possible. Looking at the second derivative of the potential

function after interchanging the extr_ma, we get the condition that

P(_M ) < p(_m ). Substituting the values _I = _M' q = _m into the space-

charge functions for such a potential distribution, we get p(_M ) > p(7]m )

if _M > _m" Since the last statement is always true, this gives a

contradiction.

2. Type B and Type C Solutions

When only one of the extremum points is inside the diode, only

one kind of particle is returned in the whole diode space. This happens

when either _m = 0 (type C) or _IM = _2 (type B). Using a similar

argument for these potential functions as was used for the type D case,

we can show that the potential functions will be monotonic in the two

regions for both type B and type C solutions (see Fig. 6).

3. Type A Solution

It is also possible that both extremum points are at the

boundaries. This means that _m = 0 and _M = _2 and that there are

no returning particles of either kind in the diode. The function F-(q)

has to be used for both streams in their respective space-charge formula

[see Eqs. (19) and (20)] and since there is only one region, the poten-

tial is monotonic in the whole diode space.

D. THE COMPLETE SOLUTION

With the four types of potential functions, all possible basic-

solution types have been covered. It is still necessary to show how

one can find the type of potential function that is applicable for a

diode with given boundary values, and how one can calculate the

characteristics of the device.
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The four basic types of the potential function are shown on Fig. 6.

Three regions can be distinguished on these diagrams. Region I is

between the electron emitter plane and the plane where _ = _m" Region II

extends for the potential values _m _ _ _ _M' Region Ill is near the

ion emitter where _M _ _ _ _2' Looking at our diode from this point of

view, we can consider all four types as type D (see Fig. 6). Types A,

B, and C are only degenerate cases of type D. Degeneracy occurs when the

lengths of region I or region Ill, or both, become zero. Mathematically

this yields to a formula valid for all possible basic solutions. Equa-

tion (35) now becomes:

_m TIM

d_ + _ d_ f_2 d_

_2 =-fo J _12(_]) mJ_ii2(_) _]MJ _iii2(_])

(36)

where _m _ O, _M _ _2" Using the procedure outlined in the preceding

section, _i 2 (_), _i12(_), _ii12(_) can be given explicitly as

_I 2(_) = Gi exp [-6i (riM - _2 )] G-[6i(hM - h)]

+ ae exp (_e _m ) G+[6e (_ - nm)] + 7

el12(_) = C_i exp [_3 i (n M -_2)] G- [_i(BM -_)]

+ C_e exp (6e _m ) G-[6e (_ - _m )] + 7

2

Gill (_) = Gi exp [-6i (_M - _2 )] G+[6i(_M - _)1

+ C_e exp (6e nm) G-[_e (n - nm)] + 7

(37)
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Equation (36) gives the total separation distance _2' To evaluate

the integrals, one must know the boundary values 6, _, _2 of the

problem and the three parameters _M' _m' 7. For convenience, we will

call the total potential drop in the diode, _T = _M - _m" Ordinarily

_2 is also a given quantity; therefore our task is to set the values

of the three parameters _M' _m' and 7 such that the total separation

distance given by Eq. (36) be the desired diode separation. Fortunately

this task is simplified by the following relations:

1.

For the type A case, _m = 0, _M = _2' and only 7 is a

parameter. The constant 7 could be any large positive

number, and as 7 _ +_, _2 approaches zero. On the other

hand, we cannot set 7 arbitrarily large when negative,

some point _ii2(_) would become negative.
because at Hence

for a given set of 6, _, _2' if we change 7, _2 will

cover some range 0 _ _2 _ _A This _A will be the
max max

separation length of a potential function for which the

electric field becomes zero at one of the emitter planes.

We call this case a transition case.

2. Types B and C are mutually exclusive. Depending on the

values of 6, _, and _2' either type B (electron-rich

case) or type C (ion-rich case) can exist in the diode.

The conditions are:

_i [G-(_i q2 ) - 13

O_e [G-(_ e B2 ) - 1]

< 1.0

> 1.0

(electron-rich case)

(ion-rich case)
(38)

When the expression is equal to one, we have a unique

situation. In this case type B or C cannot be present

in the diode since type A changes to type D directly;

the electric field becomes zero at both emitters at

the same time. For B or C types, _T _ _2" Once _T

is set, all three parameters can be calculated because

of the condition that the electric field has to be
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zero at the extremum. The case where _T = _2 corresponds

to the transition case mentioned, and hence the separation

distance for this case is _A , which would be a transi-
max

tion from A to B (_AB) or from A to C (_AC) depending

on whether it is an electron-rich or an ion-rich case.

(See Table i for transition cases.)

_T' _2 will increase monotonically.

case will occur if we increase _T

Upon increasing

Another transition

when neither electron

nor ion emission is zero. In this case the electric

field becomes zero at the boundary plane where the extremum

has not been formed yet. Transition thus occurs from

type B or C to type D. The length associated with this

transition is _BD or _CD' For both cases, this length

is called _D because it is the minimum separation
min

length for the D case when 5, 6, and q2 are given.

3. For type D, _T = _M - _m and _M > _2' _m < 0. If _T

increases, _2 increases monotonically so that with

increasing _T we could set _2 as large as we please.

From the above observations we can construct the complete basic

solution. Experimentally _, 6, _2' and _2 are given. First we have

to decide which type of solution is applicable for this set of boundary

values. To do this, we calculate the transition lengths _A and
max

_D We set _D .
min mxn

of particle only.

The term _A
max

case A-B or A-C from the formulas:

Electron-Rich Case k_-_2

> _2 corresponding to the emission of one kind

can be calculated by finding 7 for the transition

T : - C_ - (_. G-(6 i _2 ) (39)
e 1

Ion-Rich Case (A-C)

= - a G-Q_e" __q2)" - a.7
e 1

(40)
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TABLE i. RELATIONS GOVERNING THE TRANSITION CASES OF THE

OPPOSITE-STREAM DIODE

Transition Potential Required Equations Determining the Three

Type Form Condition Parameters

A-B

A-C

B-D

C-D

L_

Electron-

rich

Ion-rich

Electron-

rich

Ion-rich

7m=O

7. = 721¥I

_, =-%-,,iG (_i72)

7m=O

7 M = 72

"Y= -aeC-(_e72)-,,i

1 (_ G-(_eTT)-I_7T-- 72+ Te log C_( iTT)_Ij

(Solved by Iteration)

7 m = 72 - 7 T

7 M = 72

= -a e exp {_eTm}G-(_eTT)-ai

1 (_e C(_iTT)-I'7T = 72 + _i Iog al G_(_eTT)_I )

(Solved by Iteration)

7 = 0
m

7 M = 7 T

7 = -a. exp t_i(72-7M)} G-(_iTT)-a
1 e

Setting _M = q2' _m = 0, and knowing the calculated value of 7 from

Eq. (36), we get _A Now if _2 < _A , we know that the type A
max max

potential function is applicable.
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The term _D can be calculated by the conditions that the
min

electric field has to be zero at two points--one of which is at a boundary

plane. Again we have to distinguish between electron-rich and ion-rich

cases:
Electron-Rich Case (B-D)

By iteration riT can be found from the following equation:

i [ _ G-(B e riT) - i 1
= + _£e (41)

_T ri2 _e log a i G (_i riT) - i

then

rim = ri2 - riT

riM = ri2
(42)

7 = -CZ exp (B e rim) G-(B e riT ) -a.
e 1

Ion-Rich Case (C-D)

Similarly, the following equation is solved by iteration:

i [ (_i G-(_i riT ) - i ]

riT: _2÷ 7i log[% G (% _T)- i]
then

(43)

rim = riT

7 = -(_- exp [_ (ri2 -rim )] G- (_i riT ) -ai i i

(44)

Knowing the set of parameters riM' rim' and 7 and the constants _, 6,

and _2' Eq. (36) again can be evaluated, resulting in [D . If
mln

_2 > _D , we know that the type D potential function is applicable for
min
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our diode. If _A _ _2 < _D , then depending on whether we have an
max min

electron-rich or an ion-rich case, type B or type C potential has to he

used respectively.

With the described procedure we can determine for any given set of

boundary values, i.e., _, _, _2' and _2' which potential form is appli-

cable. We now must determine the values of the three parameters such

that if they are substituted into Eq. (36), the resulting integral

expression gives the desired separation distance.

For the type A case we have to change only 7 and hence can get a

correspondence between the parameter 7 and the separation distance

calculated by Eq. (36). Some kind of interpolating method then could

give 7, which corresponds to the given separation length.

For the others cases, _T is changing, and the correspondence is

set up between _T and the separation length calculated by Eq. (36).

The only slight complication is that we have to calculate the three

parameters from TIT and from conditions on the electric field at the

extremum points. Table 2 presents these relations for all four cases in

a tabulated form.

In all cases it was found that the separation distance was a unique

function of the chosen parameter (7 or _T ) and that by changing these

parameters this distance can be varied continuously from zero to any

desired value.

We have written a BALGOL* program which performs all numerical and

logical procedures automatically. A detailed analysis of this program

can be found in Appendixes A and B.

For demonstrations, we have calculated the separation distance as a

function of the parameters _T' 7 for the diode presented in Chapter I.

For example, if we apply 20 v across the diode, the normalized constants

are: U = 1.12, _ = 0.857, _2 = 390. The result is shown in Fig. 7.

Now that we have shown that a self-consistent dc solution of the

basic type always exists and can he determined uniquely from an arbitrary

set of boundary values, we will examine the spatial derivative of the

space-charge function of this basic solution.

Stanford version of Burroughs algorithmic language.
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FIG. 7. THE RELATION BETWEEN THE CALCULATED SEPARATION LENGTH AND

qT = qM - Bm FOR AN OPPOSITE-STREAM DIODE.

E. THE CONTINUITY OF dp/d_ OF THE BASIC SOLUTION

We have to examine the continuity of d#/d_ at the points q = qm

and _ = qM only. Elsewhere dp/d_ is well-behaved.

Physical intuition suggests that the spatial derivative of the

space-charge function should be continuous everywhere inside the diode;

therefore we take the case when qm < 0, qM > _2' so both points are

located inside. If dp/d_ were discontinuous or infinite in the diode,

it would be necessary to reexamine our model. First of all, collisions

are always present. Even if the number of collisions can be neglected

under ordinary circumstances, their effect will certainly be pronounced

in a situation where the collisionless model predicts discontinuity of

the space-charge function. Diffusion currents caused by such disconti-

nuities could hardly be considered negligible, for they would destroy
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such discontinuity. In the case when collisions are totally absent, a

small rf perturbation of the dc state would have the same effect through

the process of phase mixing. Consequently, whenever discontinuities of

such a kind appear, collisionless dc analysis is not adequate.

To calculate dp/d_ we use the equality:

da d_£ (45)
dE = d_

Let us make our calculation at the point _ = _m" Here the space-charge

contribution of the ions is a regular function of _, so dPi/d _ is

finite. The electric field, on the other hand, approaches zero like

±CI _ - _m" (See Eq. (37) for the expression of the electric field.)

The major contribution of dp/d_ comes from the electrons because

dPe/d _ approaches infinity like C2/±_- _m when _ approaches _m"

Neither C 1 nor C 2 is zero, therefore dp/d_ will be finite and non-

zero. The continuity of dp/d_ will now depend on the sign of dPe/d _

and of _(_) at both sides of the point _ = _ . The potential has a
m

true minimum at _ = _m (as opposed to the case where _m = 0), there-

fore _(_) will change sign when _ is passing through _ . Whether
m

dPe/d _ will also change sign depends on the functional form of pe(q).

If we have to change F+(_) to F-(_) at the point _ = _m in the

expression given for pe(_ ) in Eq. (19), the sign of the derivative of

pe(_) will also change. In this case dp/d_ will be continuous. As

shown in this section for the basic solution, this condition is always

satisfied for both the electron space-charge function at the potential

minimum and the ion space-charge function at the potential maximum.

Consequently, we can conclude that dp/d_ will always be continuous for

the basic solution inside the diode.

As mentioned earlier, the potenti_l function can become periodic

in space under some circumstances, in which case it will be seen that

dp/d_ is discontinuous. This case is discussed in the following

chapter.
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IV. THE PERIODIC DC SOLUTION

The preceding chapter showed that a basic solution of the dc

potential function always exists in the opposite-stream diode and it

is single valued. The term "basic solution" is used for the case when

the potential in the diode reaches its maximum and minimum values only

once. When both maximum and minimum appear inside the diode it is easy

to extend the basic solution to the periodic type of solution shown on

Fig. 8.

a. The basic solution

b. Periodic solution with three half periods

....

c. Periodic solution with the largest number

of half periods possible for this diode

FIG. 8. THE CONSTRUCTION OF THE PERIODIC

SOLUTION FOR A DIODE.
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A. THECONSTRUCTION OF THE PERIODIC SOLUTION

In Chapter II it was seen that the differential equation of our

problem was satisfied with both signs of the square root in the velocity-

distribution functions [see Eq. (ii)]. The choice of these signs has to

meet the boundary conditions of the physical diode. Let us start at the

electron emitter of a diode inside of which there is a basic dc potential

function of type D. Before the electrons reach the minimum, their space-

charge function contains F+(_) which changes to F-(q) after the mini-

mum. On the other side of qm' both streams have F-(q) in their

respective space-charge functions. Going toward the ion emitter, we

arrive at the point of maximum potential. For the basic solution, F-(_)

would change to F+(_) in the space-charge function of the ions. How-

ever, let us keep F-(_) for both streams, in which case the solution

becomes periodic. Since we have an ion emitter at the far right, we

have to change F-(_) to F+(_) in the space-charge function of the

ions at the maximum point after a finite odd number of half periods.

The potential on the other side of qM is continued to the ion emitter.

Hence, we have constructed a periodic solution for our differential

equation which satisfies the boundary conditions also.

B. THE SPACE-CHARGE FUNCTION OF THE PERIODIC SOLUTION

As mentioned before, there is a difference between the two extrema

that are near the respective emitter planes (which actually limit the

currents) and the remaining extrema which appear periodically between

the first two. The form of the space-charge function does not change at

the latter points; however, there is a change at the current-limiting

extrema. The physical difference in these cases is apparent from the

determination of the spatial derivative of the space-charge function in

Sec. IIIE. For the periodic extrema the derivative dp/d_ will be

finite and it will have different signs if we approach the periodic

extrema from different sides (see Fig. 9). This discontinuity makes our

dc analysis of questionable value. It requires some rf analyses to

determine how long, if at all, these periodic types of solutions could

be supported in a diode of given dimensions.
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THE PERIODIC SOLUTION

I' Potential

Applied
•potential

•_Distance

Separation distance

'Space charge

I ', u,; I .... I_

i I ' i

The derivative of

space charge density

dp
is

discontinuous

Electron Ion
emitter emitter

FIG. 9. THE SPACE-CHARGE FUNCTION OF A PERIODIC SOLUTION•

The derivative of the space-charge function is continuous
at the first minimum and at the last maximum, but it is

discontinuous at the other extrema.

C. DETERMINATION OF THE POSSIBILITY OF PERIODIC SOLUTIONS FOR A

GIVEN OPPOSITE-STREAM DIODE

For a given separation distance between the emitters, periodic

solutions would allow more current to flow in the diode than the basic

solution, and hence could be detected by simple dc measurements.

Consequently it would be desirable to be able to predict from theory

whether, in a given diode, periodic types of potential functions could

exist or not. A simple procedure is presented which could establish

this fact for any given opposite-stream diode.

If we follow the procedure of generating periodic solutions explained

in Sec. IVA, we can construct any odd number of half periods by increas-

ing the separation distance between the emitters. In an experimental

diode, the separation distance is usually fixed; therefore, in order to

fit more than one period into the space, we have to decrease _M and
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increase _m" We can thus increase the number of periods in the diode

until one of the extrema is shifted to the boundary plane (see Fig. 8c).

When this occurs, no more periods can be fitted in the diode space for

the given conditions.

This procedure offers a convenient way to determine the maximum

number of half-periods which could be present in the diode. In Fig. 8

it is seen that the length of one half-period of the highest order

solution, _0' is slightly less than the separation length of the transi-

tion case D-B or D-C. We called this length tD The difference
min

between t0 and tD is the region between the unsaturated emitter
min

and the current-limiting extremum, which is usually small. Even for

small _2 the length of this region is no larger than I0 percent of _0"

Since we are presenting a graphical procedure for designing purposes,

the use of tD in the place of t0 gives no noticeable error. If
min

we divide the normalized separation distance t2 by this length _0'

then the largest odd integer still less than this ratio t2/t 0 will give

the maximum number of half-periods that could exist in the diode.

We have calculated and presented here curves which give _0' for

most practical cases, as a function of the values of 5, 6, and _2"

We can calculate these values from the known construction and operation

of the diode, by Eq. (31), and by the aforementioned normalization

procedure. Given the values of 5, 6, and _2' one can determine _0

by the aid of the curves presented in Appendix C. The curves are given

only for _ > 1 because by simultaneously taking 1/6 instead of _,

and 1/6 instead of 5, t0 will remain unchanged. Since _2 is also

given, we can form the ratio _2/t 0 and determine the maximum number of

half-periods possible in the diode.

,,_ ua** m,zuw the ......'- ".... _"^_ in

example which was presented in Chapter I. Let us assume that we operate

this diode with 30 v across it and would like to determine whether

periodic types of solution could be present. Summarizing, the boundary

values of this diode are:
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Jse = 0.1 amp/cm 2, Jsi = 10-3 amp/cm2'

T = 1200 ° K, T. = 1400 ° K,
e 1

V 2 = 30 v,

d = 0.2 am,

_mi/m e = 112

From these values and Eq. (15), we obtain

i 2_m 1013 Jse i011N = j e - 4.02 x -- = 1.16 x electrons/cm 3

e se e 2 kT
e e

i 2_m. 1013 m_m_ Jsi ii
i - 4.02 x -- = 1.2 x i0 ions/cm 3

Ni = Jsi e 2 kT.i V_i

so that, from Eq. (26), we have

= N i + Ne = 2.36 x I0 II particles/cm 3

N.T. + NT
-- i i e e

o KT = = 1302
N. + N

1 e

= V e--_- = 6.9 = 5.13 X 10 -4 cm

Then,

d

_2 = --= 390

e 11600

_2 - V2 - V2 = 178
k¥ ¥
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se
Ot_ j-- = 0.893

sl

T
e

_ :------ i
T.

I

For _ = I, (_ = 0.89, _2 = 178, the first diagram of Appendix C gives

_0 = 140. The ratio _2/_ 0 = 390/140 -_ 2.8 < 3, so that no periodic

solution is possible.

If the diode separation were 1 cm, _2/_0 would be 14 and thus the

maximum number of half-periods possible would be 13.

D. DETERMINATION OF CURRENT FLOWING THROUGH THE DIODE WHEN ONE EMITTER

IS SATURATED

As we have seen, the potential function with the largest number of

half-periods that can exist in the diode causes saturation of one of the

emitters. The same effect happens if periodic solutions are not possible;

but we apply such a large potential across the diode that the correspond-

ing _D becomes equal to _2' the separation distance. In both cases
min

we have to determine whether the diode is ion- or electron-rich in

order to tell which emitter will saturate first and what value of current

is flowing through the diode for this voltage. We can do this by the

function G-(x) - 1.0 (see Table 2 for conditions for the diode to be

ion- or electron-rich). This function is shown graphically on Fig. i0.

With the aid of this graph, we determine two quantities:

Qe = _e [G-(B e q2) - 1.0] (46)

Qi : (_'z [G-(_i q2 ) - 1.0] (47)

where _2 is the normalized potential difference of the emitters when

saturation of one emitter occurs.
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12

:0/0
For X > I00.0

G'(x)-I.O '_'----1.1284._x-I.0--

20 50 40 50 60 70 80 90 I00

X

FIG. 10. THE FUNCTION G-(x) - 1.0, WHICH IS USED FOR DETERMINING

WHETHER THE DIODE IS ELECTRON- OR ION-RICH.

When Qe > Qi' the diode is electron-rich and the ion emitter

saturates first. The total current density in the diode at this

saturation point is given by

q .

1 (48)
J =Jsi+_--J se
Stotal e

When Qi > Qe' the diode is ion-rich and the electron emitter

saturates first. The current density will be

q
e (49)J = J + --- j

Stotal
se _. si

-i
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For the diode example used, no periodic solution was possible;

therefore, at V 2 = 20 v neither emitter can saturate. If we look for

the potential which saturates one of the emitters of the diode that

causes D-B or D-C transition of the basic type, we can simply set _0

(or _D ) equal to
min

ing potential value.

saturating potential

This is equivalent to 88 v.

obtain

_2' and look up in the given curves the correspond-

Since _ = 0.89 and G _ 1, we find that the

KS is equal to 780 (see diagram (a) in Appendix C).

and Q , weWorking out values for Qe i

Q =
e 1 + (_

[G-(B e qs ) - 1.0] _ 14.6

i [G-(_ _i ) - 1.0] _ 16.3
Qi- i+_ _ i s

Hence the diode is ion-rich, and the total current density at saturation

is:

q

j = j + e = 0.109 amp/cm 2
Stota I se _i Jsi

It does not seem practical to give tables of data of diode

characteristics since four boundary values are involved and even limited

ranges of these values would require numerous tables. The computer

program we have written does this job efficiently for any desired set

of boundary values. Therefore, we are using the program as the final

means of calculating diode characteristics. Information on this

numerical program can be found in Appendixes A and B.
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V. COMPUTER SIMULATION OF THE OPPOSITE-STREAM PLASMA DIODE

In the earlier chapters a complete dc theory of the opposite-

stream plasma diode was presented. The results of this theory were

calculated after making three basic assumptions. These were: motions

of particles are confined in one dimension, collisionless conditions

are present, and the state of the diode is time independent. To deter-

mine how closely these results can predict the behavior of an actual

device, it is necessary to examine these assumptions as to their

realizability under laboratory conditions.

The first two assumptions can be well approximated experimentally.

The assumption of time-independent behavior, however, is not realistic

and is necessary only in order to make the mathematical analysis feasible.

Nevertheless, if the dc states are stable under time-varying conditions,

then the time-average behavior of an experimental device will approximate

its theoretical dc operation. But the question of stability can be

decided only by a time-dependent analysis. This question becomes more

complex when, as happened in our analysis, more than one self-consistent

dc state is possible for a set of boundary conditions. In this case,

not only the stability of these dc states is of importance but also the

knowledge of the conditions under which a particular dc state can develop

in the diode.

The usual technique of linearizing the time-dependent, collision-

less Boltzmann equation by assuming small-amplitude perturbations could

not be applied to our problem. The nonlinear effects of particle trap-

ping in potential wells would be lost in a linearized theory, and these

effects play a major roll in the operation of our diode, since a

potential maximum is formed near the ion emitter and a minimum near the

electron emitter. On the other hand, if we try to follow the same

procedure for the time-varying case as was used for the dc theory, we

find a hopelessly complicated set of integrodifferential equations.

This set includes the time-varying collisionless Boltzmann equation,

Maxwell's equations, and the boundary conditions of our diode. Even if

there were hope of obtaining an analytical solution to this set of

equations, the extensive use of a computer would be unavoidable.
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Fortunately, our efforts and computer time could be used much more

efficiently by applying the well-known computer model of a one-dimensional

plasma to our problem.

A. HISTORICAL DEVELOPMENT OF THE COMPUTER MODEL OF ONE-DIMENSIONAL

PLASMAS

As early as 1943, D. R. Hartree and P. Nicolson [Ref. 12] used

the computer simulation of the motion of charged particles in one

dimension. In their paper, as in all subsequent papers written on

computer models of one-dimensional plasmas, charges are represented as

infinitely thin charged sheets that are moving perpendicular to their

plane and carrying a set number of coulombs per area surface charge.

Advance of time occurs in steps. During one time step the positions

of the charged sheets are changed according to their velocities, and

their velocities are changed according to their accelerations. The

acceleration of a charged sheet is determined by the electric field

that is acting on it, while the electric field is calculated from the

positions of the charged sheets. If the duration of one time step is

taken short enough, the electric field can be considered constant during

this time interval. This means that the motion of sheets can be

calculated independently for this time interval, since they experience

constant acceleration. After the positions of all the sheets are

changed, the electric field is recalculated and time advances by one

time step. The calculation of the trajectories of the sheets involves

only elementary arithmetic operations and a record of the positions and

velocities of all the sheets employed. Hence the facilities of a

digital computer are sufficient to perform these calculations.

Many authors since Hartree and Nicolson used the described pro-

cedure of compuCation f0i- ''- ....... _ ....... l_,-o*_,-,n¢ o¢ nn_-dimensional

plasmas. These works differ mainly by their methods of introducing the

charged sheets into the plasma and by the boundary conditions of their

models. The model of an infinite plasma (periodic boundary conditions)

with equal number of electron and ion sheets was used by Buneman [Ref. 13]

to show the randomization process of the motions of electrons and ions

that had directed energies initially in a plasma. Dawson [Ref. 14] gave
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an extensive study of the statistical behavior of the computer model

of a one-dimensional plasma considering the motions of electron sheets

in a neutralizing background of infinitely heavy ions.

The samecomputer model with minor alterations was applied also to

finite or semifinite models of diodes, electron beams, or electron-ion

systems. Analysis of the limiting perveance of electron beamsand the

investigation of transient effects in electron diodes were carried out

by Birdsall and Bridges [Ref. 15], Twombly and Lauer [Ref. 16], and by

Lomax [Ref. 17]. In these works electron sheets were injected at a

plane with a given entrance velocity into a diode of finite size. Dunn

and Ho [Ref. 18] considered a semi-infinite space that started at a

plane where ion and electron sheets were injected. Assigning the electron

sheets and ion sheets different masses and entrance velocities, they

observed the neutralization effects of cold electrons in ion beams. The

same problem with randomly emitted electron sheets was analyzed by

Buneman and Kooyers [Ref. 19]. The random emission of electron sheets

simulated a thermionic electron emitter in their model.

A paper by Tien and Moshman [Ref. 20] is different from those

described above because they considered thermionically emitted electrons

at a fixed position in a finite diode. For this reason this paper is

more closely related to our approach than the papers already mentioned.

They considered a finite space with a thermionic electron emitter as one

of the boundary planes. The other plane was a collector of electrons.

A constant potential was applied across the two planes. They were

interested in the noise figure of an electron diode that is influenced

by the fluctuations of the potential minimum near the thermionic electron

emitter. Having an average of 363 electron sheets in the diode that

were injected at the plane of the electron emitter in a random manner,

they were able to determine this minimum noise figore.

For the computer simulation of the opposite-stream plasma diode,

the model of Tien and Moshman has to be used with the addition of a

thermionic ion emitter at the second boundary plane. This addition

posed no difficulty. The major problem arose from the fact that we

were interested in the formation of stable dc states in the diode and

that only a very large number of ion and electron sheets could reveal

SEL-64-012 - 42 -



that the diode has a quiescent state. It is impossible to handle

several thousand sheets in accordance with the strict rules of the

computer models described above; even on a modern, high-speed computer

these calculations would take a long time. Consequently, we had to

alter the computer models in many ways. These alterations will be

discussed in the next section.

B. COMPUTER MODEL OF THE OPPOSITE-STREAM DIODE

Our aim was to construct a computer model of a one-dimensional

plasma diode with thermionic electron and ion emitters and with the

capability of handling thousands of sheets at every time step. Theoreti-

cally, the computer models described above would be sufficient for this

aim, but, because of their slowness of operation, they do not suffice.

In these programs the major part of the time is spent on the calcula-

tion of the electric field. In order to assign the right acceleration

to the sheets, the electric field has to be determined at each point

where a sheet is located. This can be done only if the sheets are

arranged, i.e., sorted according to their positions in the diode. For

several thousand sheets this sorting procedure is so slow that it makes

the whole program uneconomical. Fortunately, the calculation of the

exact field in the diode is not necessary; an approximating procedure

that uses coarse graining in space can avoid the complete sorting of the

sheets and produce results in a much shorter time.

i. Coarse Graining in Space

In the computer diode a charged sheet represents a certain amount

of surface charge; therefore, the electric field is discontinuous across

it. Let us assume that the value of the electric field is given at the

left boundary plane, and for convenience, that it is zero. (The calcula-

tion of the true field at the left plane will be discussed in a later

section.) The calculation of the field in the diode, or of the accelera-

tions of the sheets according to the exact field, is as follows. (See

Fig. lla.) The field is unchanged until a sheet is reached, i.e., the

one nearest to the left plane. At the position of this sheet the
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DIODE DETERMINED BY CHARGED SHEETS IN THE DIODE SPACE.
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electric field jumps to a new value. The amount of the jump is pro-

portional to the surface charge that the sheet represents. The accelera-

tion of this sheet is determined from the field at the middle of the

jump, El, on Fig. lla. On the other side of the sheet the field is again

constant until the next sheet is reached, where it changes its value by

the same amount as before. The direction of the change is determined by

the sign of the charge on the sheet. The accelerating field acting on

this new sheet, E2, is taken again at the middle of the jump. Since the

order in which the sheets are following each other in space is known,

this procedure can be continued from sheet to sheet.

In the coarse-grained model (coarse graining in space was first used

by Dunn and Ho in Ref. 18 and it was also applied by Hockney for the

computer model of a two-dimensional plasma [Ref. 21] p. I-i02), the diode

space is divided into a number of small segments that have equal lengths.

The position of a sheet is recorded exactly as in the earlier models,

but its charge is assumed to be uniformly distributed in the segment in

which it is located. If there is more than one sheet in a segment, the

algebraic sum of their charges is taken and distributed uniformly.

Consequently, in each segment the field is a linear function of distance

and its total change across a segment is determined by all the sheets

that are located in it (Fig. llb). All these sheets are given the same

acceleration that is determined from the value of the electric field at

the middle of the segment.

When we use this coarse-graining procedure we are allowing for an

error both in the calculation of the electric field and in giving the

same acceleration to all the sheets that lie in one segment. The error

in the evaluation of the electric field is small if there are a large

number of sheets in the diode and if the length of a segment is a frac-

+_- _ +_ _ .... ÷o_¢t_r n_hy_ lenmth. _ The error in _ivin_

neighboring sheets exactly the same acceleration cannot cause a false

collective phenomenon in our model because even initially the velocities

of the sheets are in disorder. We have made trial calculations with

both the exact and the coarse-grained methods having an average of i000

sheets in the diode. We have divided the diode that was 40 Debye lengths

long into 1024 segments. The results obtained by the coarse-grained
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method did not differ noticeably from that of the exact calculations;

furthermore, there was a considerable saving in computer time. In later

calculations we used nearly i0,000 sheets and could expect that the

approximations used did not affect our results at all.

The sorting of the sheets is eliminated because the electric field

is now calculated at fixed points in the diode and not at the changing

positions of these sheets• A detailed description of these calculations,

as well as other parts of this computer program, is given in Appendix D.

2. Moving the Sheets During a Time Step

On Fig. 12 the schematic diagram of the computer model is shown.

The first major function that the program executes is the advancing of

sheets accord_g to their velocities, accelerations, and equation of

motion. The equation of motion of the sheets can be represented by a

vector equation in the space of N dimensions where N is the number of

sheets.

_4
x = (50)

The two dots signify the second derivative with respect to time. The

components of the position vector x are the x positions of the N

sheets, and the components of the vector x are the accelerations of

the sheets, respectively. The solution of this highly complicated,

nonlinear differential equation is carried out by increasing time in

small steps and making some assumptions about the behavior of the diode

during one time step. The state of the diode can be calculated from

its known state at the previous time step. The assumption is usually

made that during a time step (_t) the accelerations of the sheets are

constant. Then, if the positions and velocities of the sheets at time

t are _(tn) and x(t ), their new positions and velocities are
n n

calculated from the following expressions:

i'_ )2
i(tn+l) = x(t ) + _(tn) _t + _ X(tn) (_t

n (51)

_(tn+l) = _(tn) + X(tn) _t
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FIG. 12. FLOW CHART OF THE COMPUTER PROGRAM THAT

SIMULATES THE MOTIONS OF CHARGED SHEETS IN A

ONE-DIMENS IONAL DIODE.

o.

X(tn) is given by Eq. (50) from x(t ). This procedure is
where

n

correct when At approaches zero, but it could cause a considerable

error in the calculations for a finite At if there are regions in

the diode that are greatly influenced by the distribution of charges.

In this case a small change in the position vector could cause a large

change in the acceleration of the sheets during a time step. Naturally,

this is the case for a nearly neutral plasma, in which the assumption

of constant acceleration even for a small time step cannot be made.

Dunn [Ref. 21] has demonstrated that when using the above procedure in

a nea_ly neutral plasma the amplitudes of oscillations were increasing,

though rigorous analysis showed that only sinusoidal oscillations could

be present.

The assumption of constant acceleration of the sheets during a

time step is not necessary. Any model that gives the exact results for

the case of constant field in the diode is acceptable. This means

that if the field in the diode is a constant both in space and in time,
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the results of the computer calculations cannot be functions of the size

of the time step and they have to agree with those calculated by Eq. (51).

If this condition is satisfied, then we are certain that the calculations

give the right results when _t approaches zero. Furthermore, if we

do not assume that sheets have constant accelerations during a time step,

our solution is a good approximation to the exact solution when a small

w_ _,,_ _ ls _u for any-_-'_^_

Let us observe first that the acceleration of the sheets x, given

by Eq. (50), is determined at times when the position of the sheets are

known. Hence, x is known only at times separated by certain time

intervals. Let us assume that our calculation was exact up to time t
n'

and from the past motion of the sheets and their accelerations at time

tn, we would like to calculate their positions at a future time tn+ I.

(See Fig. 13.) Since we know the positions of the sheets at time

tn_l, we know the change in their positions that occurred in the time

interval tn_ 1 _< tn --< tn+l. We call this change (ZhX)tn_ I. Our aim is

to calculate (_)t ' which determines the positions of the sheets at
n

time t We know the value of the second derivative of x at time
n+ 1"

tn; we make the assumption that this derivative does not differ much

from the second difference of x divided by the square of the time

step. The second difference of _ can be calculated from the first

differences (Zk_)t and (_x) giving
n tn-l'

-
n n-1 (52)

X(tn)

From Eq. (52), (Zl_)t can be expressed and the new positions of the
n

sheets are given by the expression:

X(tn+l ) : X(tn) + (Zh_)tn = x(tn) + (fl_)tn_l

":_ 2
+ x(t ) (_t) (53)

n
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FIG. 13. TRAJECTORIES OF CHARGED SHEETS AS APPROXIMATED BY A

STEP-BY-STEP ADVANCE OF TIME. The acceleration x(t) is given

at time t .
n

If the acceleration of a sheet is constant, the trajectory of the

sheet becomes a second-order parabola and the described method gives

this trajectory independently of the size of _t used. Let us consider

a sheet that has a position X(tn_l) , and velocity V(tn_l) at time

t = tn_l, and that it is in a constant field region. If the acceleration

of the sheet is "a" (a constant), then the change in the position of the

sheet during the time interval t < t < t is
n-i -- n -- n+l

1 (At)2 (54)
(Ax)t = V(tn_l) At + _ a

n-1
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The position of the sheet at time t = tn is X(tn) , and

X(tn ) = X(tn-l) + V(tn-l) _t + _al (At)2 (55)

Equation (53) gives the value of

the sheet is "a" at time t = t
n

X(tn+l) since the acceleration of

also. The resulting relation is

1 ( t)2 +X(tn+l) : X(tn) + V(tn_l) At + a a (At) 2

1 (2_t)2
: X(tn_l) + V(tn_l) (2At) + _ a

(56)

which is the exact position of the sheet at time t = t calculated
n+l

by its equation of motion. This result shows that our model approaches

the true physical diode if At _ O. By treating At as a parameter of

the computer model, we can examine the results of computer runs that

were made with different At but which apply to the same physical

situation. If we decrease At and do not observe any change in the

results, then it is certain that the error in using finite differences

instead of differentials is not significant. Since we deal with a

physical device, we are certain that this limit can always be reached

with a small but finite At.

We have shown how our computer program advances the sheets during

a time step. A record is kept of the position and the previous change

of the position of each sheet as long as the sheet stays in the diode

space. The accelerations of the sheets can be calculated from their

self-field, in which case the natural behavior of the diode is reproduced;

or it can be calculated from a prescribed dc field distribution, in

which case a desired state is forced on the diode. The actual procedures

of the computer program that execute the advancing of the sheets are

discussed in Appendix D.
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3. Injectin_ New Sheets in the Diode

The electron and ion emitters of our model are simulated by the

injection of electron and ion sheets at their respective emitter planes.

Before discussing the assignment of the initial velocities to these

sheets, it is necessary to show the relation between the initial velocity

of an injected sheet and its equation of motion for the first time step

it spends in the diode space. The successive motion of the sheet is

then calculated by the procedure of the previous section.

Let us assume that a sheet is injected into the diode during the

time interval tn_ 1 < t < t (Fig. 14) at one of the boundary planesn

and with an initial velocity v 0. Since we do not know the exact time

of injection, we assume that it was injected at time t = t - R _t,
n

where R is a number between zero and one. At time t = t a position

X(tn ) and a previous change of position (Zkx)t n-1 has to be assigned

to this sheet so that it can be moved during the next time step.

x(tn) -

(_xX)t n_ I

I ' 'I R_t I

!I , I

J i/
i I
i I

I i

tn-I tn tn +I

EMITTER I I I t

FIG. 14. TRAJECTORY OF AN INJECTED SHEET DURING THE FIRST

TIME STEP IT SPENDS IN THE DIODE SPACE.
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In order to determine the values of these two quantities as functions

of v0 and R, we use the condition that our model has to be exact when
the field is uniform in the diode. Consequently, the simplest assump-
tion is that the acceleration of the injected sheet is a constant during

the time interval tn_1 < t < t . This acceleration is calculated from-- -- n
the field in the segmentnearest to the emitter plane, and at time

t = tn_ I. Let us call this acceleration a0(tn_l) for the sheet injected,

then the position of the sheet at time t = t can be expressed as
n

1 ) (R 2x(tn) = voR t +  a0(tn_1 (57)

assuming that the injection plane is located at x = O. When calculat-

ing the previous change in the position of the injected sheet, we

extrapolate its trajectory to time t = tn_ I. (See Fig. 14.) Assuming

constant acceleration for this trajectory, this change can be calculated

by the following expression:

)tn i i (_t)2
(_x = v 0 _t + a0(tn_l) (R - _)

(58)

The injection of sheets occurs at a constant mean rate, i.e., a

set average number per time step. In Eqs. (57) and (58), R could be

represented as a random number uniformly distributed between 0 and i.

This arrangement would simulate the continuous operation of the emitter.

In our case, however, such an arrangement would be an unnecessary

complicationp since the initial velocities of the sheets are already

randomized. We can eliminate R by considering it as a random number

and calculate the average values of the above expressions. The averag-

ing yields to the following values of the initial conditions of an

injected sheet:

1 1 ( t)2
X(tn) = _ v 0 _t + _ ao(tn_l)

(zS_X)tn-1 = vO _t

(59)
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This rigorous derivation of the initial conditions for the injected

sheets has not been used in earlier works, though an error in assigning

x and Ax to the injected sheets could cause large deviations (10-20

percent) in the values of the current limiting extrema near the emitters.

The random velocity v 0 and the instant of injection indicated by R

are uncorrelated.

We used the method of Tien and Moshman [Ref. 20] to simulate the

thermionic emitters of the opposite-stream diode. A sequence of numbers

R', called pseudo random numbers, is generated in the IBM 7090 computer

with the Power Residue Method [Ref. 22]. These numbers are uniformly

distributed in the unit interval, so 0 < R' < i, where R' signifies a

member of the sequence. Whenever a sheet is injected, a successive

member of the sequence is calculated. If the sheet is an electron

sheet, it will be assigned the initial velocity:

R' (60)V0e = /- log

If it is an ion sheet, its initial velocity will be given by

V-C = (61)

The symbols mean the same as before: T is temperature, m is mass,

and k is Boltzmann's constant. The symbol R' stands for a particular

member of the sequence of pseudo random numbers uniformly distributed

in the unit interval and uncorrelated with R.

4. Calculation of the Electric Field, and Current Density in the

Diode

The electric field is determined by the combined effect of the

distribution of charges in the diode (p) and the applied potential

across the emitters, (V2). We have considered only the former (Sec. I)

until now. When the applied potential is constant in time, as was the

case in all the aforementioned papers on computer models, the separa-

tion of these two effects is immediate. This method can also be used
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when the applied potential is a function of time, but we have to show

that it is compatible with the physics of our problem.

The electric field in the diode, E(x,t), satisfies the following

equations:

d

f E(x,t) dx = - V2(t) (62)

0

and

 E(x, t ). = (63)
_x c o

The field is separated into two parts as in the case when V 2

constant, so one part will not be a function of space:

E(x,t) = El(X,t ) + E2(t )

was

(64)

We can force a condition on the other part:

d

I El(X,t dx = 0

0

From Eqs. (62), (64), and (65), E 2

(65)

can be determined, giving

V2(t)

E2(t) - d (66)

The substitution of Eq. (64) into Eq. (63) yields the result

(x't) 1
p(x,t) (67)

_x c o

The separation is completed, since E 1 depends only on the space-charge

distribution in the diode and E 2 is a function only of the applied

potential. In order to calculate the total field that is acting on the

sheets, E 1 and E 2 are determined separately and then their sum is

taken.
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In Sec. B1 of this chapter we showedthe construction of the field

in the diode with the assumption that it is zero at the left boundary

plane (x = 0). These calculations involved only El; the applied

potential was ignored. With the assumption of zero field at the posi-

t
tion x = 0, Eq. (67) can be integrated. Let us call this field E 1 .

' is not a function of distance andThe difference between E 1 and E 1

can be determined by using Eq. (65). The relation is:

d

1

El(X,t) : E_(x,t) - _/ E{(x,t) dx

0

(68)

With the help of Eq. (67), E can be expressed as a function of
1

p(x,t) only. The result is given by Eq. (69).

>1 1

 l(X't) p(x,t)dx- p(x,t)dx dx
0 0

(69)

For the coarse-grained model of our diode (see Fig. llb) the

integrals of the above expressions become sums of integrals. The

integral of the coarse-grained field is calculated in each segment and

then the results summed over all segments. In Eq. (68) for example,

the expression

d
1

of E_(x,t) dx

N -I
S

becomes

s) d

]( -, (70)
n/Ns) d El(X,t ) dx

n=O

where Ns is the number of segments in the diode, --'E1 is the coarse-

grained field, and d is the length of the diode. Since the field

varies linearly in each segment, the area under it is given by the pro-

duct of the length of the segment (d/Ns) and the value of the field at

the segment, Y ,the middle of which we will call El(n,t) Here "n" signifies

the segment number. Hence,
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f(n+l/Ns) d

s) d

d

dx
s

(71)

and the total integral becomes the summation:

N -1
s

÷
s n=0

(72)

Since the coarse-grained field is determined at the midpoint of each

segment, the above expression is used in the place of the integral in

Eq. (68).

Current is continuous in space; therefore, the current density of

our model cannot be a function of position. Maxwell's equations show

that current has a conductive and a displacement part; similarly, the

current density (J(t)) of a one-dimensional plasma breaks up into two

parts: a conductive part that is carried by the charged sheets of the

model, and a displacement part that is determined from the time deriva-

tive of the electric field. We can represent this by the following

equation:

_E(x,t) (73)

J(t) = Jc(X,t) + e 0 _t

The electric field is separated into two parts (see Eq. (64)). Sub-

stituting Eq. (64) into Eq. (73), we arrive at the following form of

the current density:

J(t) = Jc(X,t) + E 0

_El(X,t) dE2(t)

+ e 0
_t dt

(74)

The first two terms on the right-hand side of Eq. (74) depend only on

the distribution of charged sheeSs in 'the diode. The sum of these two

terms can be a function of time only, for the other terms of the equa-

tion are both independent of distance. This sum, the convection

current density in our diode will be represented by the symbol J (t)
' cony
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and calculated by the following expression:

_El(X,t)

j (t) = Jc(X t) + (75)
cony ' _t

The last term in Eq. (74) signifies a current that is due only to the

applied potential across the diode. This current is zero if the applied

potential is constant. Consequently, this term represents the displace-

ment current density in the capacitance of the empty diode. The symbol

J (t) is used for this part of the current density. If Eq. (66) is
disp

substituted into Eq. (74), the last term of the equation becomes

(76)

We constructed an equivalent circuit diagram of the computer model

on the basis of Eqs. (75) and (76). The application of this circuit

diagram becomes important for the case when an external impedance is

connected to the diode. With the help of the circuit equivalent, one

can determine conveniently the relations between voltages and currents

in the circuit and calculate these quantities at every time step by the

computer. We will show a simple application of the equivalent-circuit

model in the next chapter.

Since the current density of the diode is the sum of two terms,

the circuit equivalent is represented by a parallel circuit (Fig. 15).

One branch represents the capacitance of the empty diode, the other

shows a current generator that can be influenced by the voltage that is

applied across it. The current of this generator at each time step is

influenced also by the momentary distribution and motions of the sheets

in the _i_. We showed this dependence simply by writing the current

as a function of both V 2 and time. The equivalent-circuit diagram of

the computer diode is shown on Fig. 15. The symbol "A" is the cross-

sectional area of the diode.

It is still necessary to describe the method by which Jconv(t)

is calculated in our diode model. Since this convective term is the

sum of two expressions that are both functions of distance, a reference

- 57 - SEL-64-O12



-- +
v 2

_0
CAPACITANCE = _ A

CURRENT GENERATOR

! (v2, t)] A= [Jconv

FIG. 15. EQUIVALENT-CIRCUIT DIAGRAM

OF THE COMPUTER-SIMULATED DIODE.

position has to be given at which these expressions are calculated.

For convenience, we take the plane of the electron emitter as reference.

The first term on the right-hand side of Eq. (75) gives the value

of the current density that the charged sheets carry. Each charged

sheet represents a set amount of surface charge, ff . During a time

step, At, a certain number of sheets cross the reference plane, or what

is equivalent, some amount of charge per area crosses the electron

emitter. All sheets carry the same absolute amount of charge, only the

sign of _ is different for the ion and electron sheets. We can deter-

mine the total amount of charge that crosses the reference plane during

a time step in the following manner. We add the number of electron

sheets that are injected in this time interval to the number of ion

sheets that leave the diode space at the electron emitter during the

same time interval. We subtract from this sum the number of electron

sheets that return to their emitter during At and call the resulting

number AN. The product _ AN is the amount of positive charge per

area that crossed the plane of the electron emitter from right to left

during the time interval At, hence the contribution of this charge to

the current density is ffZhN/_t. The direction of this current is in

the direction of decreasing position, therefore it is substituted into

Eq. (75) with a minus sign. The time step _t is a constant, but the
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number of the crossing sheets is a function of time, for the sheets are

arriving at the electron emitter in a random manner.

With the known value of Jc(X,t) and with the substitution of

differences in the place of the derivative, Eq. (75) can now be calculated.

At time t = tn_ 1 the value of El(X,t ) at the electron emitter is

El(0,tn_l). During the time interval _t, sheets are advanced and new

sheets are injected; also Z_N is calculated. The moving sheets change

the electric field; E 1 also changes and is recalculated at time

t = tn_l + _t, i.e., at time t = tn. This new value is El(0,tn)_.. The

convective current density is given by Eq. (75); or with the substitu-

tion of the above quantities, it becomes:

j (tn) c _N El(O'tn) - El(O'tn-1) (77)
cony - _t + 60 _t

Current is continuous in the computer model, since the value of Eq. (77)

is independent of the reference plane used.

We have described the sheet model of the opposite-stream plasma

diode. This model is made suitable for computer calculations by a

normalization procedure and several numerical methods. The success of

our computer model depends greatly on these methods, for they determine

the accuracy and speed of the calculations. These methods are described

in Appendix D.
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VI. CHARACTERISTICS OF THE COMPUTER-SIMULATED, OPPOSITE-STREAM PLASMA

DIODE

In the preceding chapter and in Appendix D the construction of the

computer program was described. We proceed to use this program to find

the behavior of the opposite-stream plasma diode, i.e., conduct a large

number of computer experiments from whose results we are able to predict

th_ diode's behavior with certainty in all circumstances. The use of a

high-speed computer has to be limited to time intervals of the order of

minutes to make the computer calculations eeonomics!!y feasible; on the

other hand, a computer experiment has to refer to a real-time interval

that is meaningful for a real experiment. Consequently, the relation

between computer time and its equivalent in real time has go be discussed

first.

In a finite diode, such as the opposite-stream diode, the shortest

"meaningful" time interval for an experiment can be derived from the

average transit time of the slowest particles. The transient behavior

of the diode must depend on this transit time, for an equilibrium state

can develop only in the order of a few average transit times of the

slowest particles. It can be shown easily that the average transit

time of the ions for very low applied voltages is directly proportional

to the length of the diode and to the square root of the ratio of ion-

to-electron mass.

Time in the computer model (T) is measured in a normalized form

(see Appendix D). The relation between normalized time and real time

is given by the follow_g expression:

v
=--t (78)

(Note that T is a measure of time in a physical sense, not a measure

of the actual time the calculations take. The relation between • and

the time of computations will be discussed later.) In the above

m

expression, t is real time; v is a characteristic thermal velocity for

diode _2k_/me; and the quantities N, h, and _ have all been
the

defined in Chapter III. The average transit time of the ions, expressed
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in terms of normalized time, is of the order of _2 Cmi/me' where

is the length of the diode measured in Debye lengths (_2 was also_2

defined in Chapter III). For insuring the possible existence of a

periodic solution in the diode, the value of _2 must be at least 40.

Using this separation distance for a diode, a normalized time interval

of 150 C mi/m e should be a meaningful experiment on the computer.

We still have to determine the actual time spent by the computer

calculations for such an experiment. This time naturally depends upon

how many times the positions of the sheets are recalculated during a

complete computer run. The longer the time that elapses between time

steps (AT), the less time is spent by the computer for a particular

experiment. The duration of a time step cannot be increased without

limit, however, for the accuracy of the computer model depends upon

the fact that this quantity is kept small. In order to determine how

small _T should be, we have to find a time interval that charac-

terizes the fastest particles in the diode. We take the average plasma

period of the electrons as this characteristic time interval, and make

certain that the positions of the sheets are recalculated at least a

few times within one electron plasma period. The average plasma period

can be estimated by the characteristic electron plasma frequency

- = JN e2Itope c o me. Using this _pe' the average electron plasma period

in a normalized form is

= 2_a-_9
pe

Hence a normalized time interval of unity means that the positions of

the sheets are recalculated nine times during Tpe , which should be

sufficient for our model. We have also found that if we choose _T

smaller than unity, it does not influence the results of the computer

calculations.

We have already mentioned that when the full capacity of the IBM

7090 is used (an average of 10,000 sheets within the diode space), the

computations for a time step take less than 2 sec. Hence, 2.150

__ _i/m e min, are sufficient for ai/me sec, or approximately 5
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complete computer experiment. It is evident that the value of the ion-

to-electron mass ratio in the computer model must be chosen much

smaller than it is in reality; however, we will show later that the

hypothetical values of i, 4 16 for mi/m clearly demonstrate the' e

effect of this mass ratio on the results. Hence, by calculating computer

runs for these values, one can predict the behavior of the diode for

larger mass ratios also. Consequently, the longest computer runs take

20 min computer time, a short enough time to prove the computer model

highly practical and economical.

A. PARAMETERS OF THE COMPUTER DIODE

The parameters of an opposite-stream diode were selected such that

it could support both the basic and some periodic solutions. We had to

keep the length of the diode as short as possible in order to save

computer time, for the relaxation time of the diode depends on the

transit time of the ions. Choosing the diode to be 40 Debye lengths

long satisfied all the required conditions, and we did not have to

choose different diodes for the various computer experiments performed.

For simplicity's sake, the temperatures of the emitters were set

equal (_ = i). This choice did not introduce a symmetry into the

computer calculations because the saturation current densities of the

electron and ion emitters were different, even for equal masses of

ions and electrons. The dc parameter _ that determines this ratio

was chosen to be 1.5.

The applied potential across the diode determines whether periodic

solutions could exist in principle in the diode. The diagrams pre-

sented in Appendix C answer this question for an arbitrary potential

value. We used a normalized potential value _2 = 1.6 for our diode.

The transition length associated with our diode is i0. (This was

determined from Appendix C.) The separation length of the diode is 40,

and the value of the ratio is 4. This shows that a periodic solution

with three half-periods could be present in our diode.

The mass ratio mi/m e is not an important parameter of the

normalized dc problem, because the dc potential distribution, given

in a normalized form, is independent of this ratio. The normalized
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dc current, however, depends on the mass of the ions because of the

way it is normalized. Transient phenomena also depend on the mass

ratio. In particular, computations showed that the mass of the ions

determines the time interval within which the diode establishes its

equilibrium state. This time interval is approximately proportional

to the square root of the ratio mi/m e. In order to keep the computa-

tion time as short as possible, we used the hypothetical mass ratios

i, 4, and 16.

There are two other parameters of the computer model that have to

be determined. One is the length of the time step AT, the other is

the number of electron sheets injected per normalized time F . We
e

used for AT the value 1 throughout our calculations. We have showed

that in this case the electric field and the state of the diode are

recalculated about nine times in every electron plasma period. Trial

calculations with smaller values of AT gave the same results as those

calculated with _ = i. This showed that the exchange of differences

for differentials introduced only a very small error in the calculation

of the trajectories of the sheets in the diode.

For each computer calculation the electron injection rate, F
e' was

chosen as large as possible. The memory-core storage capacity of the

IBM 7090 limits the choice of Fe, for the maximum number of sheets

present in the diode space during a computer run is proportional to

F . The choice of this parameter is discussed in the next section.
e

The parameters of the diode are summarized in Table 3, together

with the corresponding dc currents. The values of these dc currents

TABLE 3. PARAMETERS AND CORRESPONDING DC CURRENTS

Parameter Calculated dc Current
J

_2 q2

40 1.6

|

m i/me Jbasic/Jsat

1 0.239 0.700

4 0.225 0.656

16 0.214 0.625

!

Jper/Jsat
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were computedby the numerical procedure for the dc states of the diode
described earlier (see Appendixes B and C).

B. FORMATIONOF THEBASICSOLUTION

Wewant to find the equilibrium state of the computer-simulated

diode and compare it to the dc states. The computer calculations start

with an empty diode and with the normalized potential value, _2 = 1.6,

applied across the emitters. During each time step a constant number

of electron and ion sheets are injected into the diode space at their

respective emitter planes. These sheets are moved under the influence

of the electric field that is determined from the combined effect of

the charges in the diode and the applied potential. The number of

sheets in the diode is increasing until there are as many sheets leav-

ing on an average as are injected. When this happens, the diode has

reached its equilibrium state.

No matter what diode parameters we chose for the above calculations,

the diode always settled down to, and its equilibrium state agreed with,

the basic dc solution. During these calculations the current through

the diode was recorded at each time step. The value of the current vs

normalized time is shown on Fig. 16 for the diode parameters of Table 3,

and with mi/m e = 16. When a smaller mass ratio is used, the diode

reaches its equilibrium state in a shorter time, but otherwise there is

no difference in its behavior.

.I

Jdiode

J bosic VOLTAGE SOURCE: ,r/== 1.6

mi/me -- 16

f

F
I I I I I I I

0 I00

NORMALIZED
TIME

I I II
200

FIG. 16. FORMATION OF THE BASIC SOLUTION IN

THE COMPUTER-SIMULATED DIODE WHEN AN IDEAL

VOLTAGE SOURCE IS CONNECTED ACROSS IT.

SEL-64-012 - 64 -



There are naturally fluctuations in the value of the current, for

the velocities of the sheets are randomly distributed. The fluctua-

tions in the potential of the diode show up most prominently in the

values or positions of the potential extrema. It is well known that

these points (the potential minimum and maximum) are the most sensi-

tive for any disturbance in the diode. In order to show that these

fluctuations are only shot-noise effects, the values of the potential

minimum were recorded at each time step for computer calculations with

different numbers of sheets. The number of sheets in the equilibrium

state of the diode is determined by Fe, the injection rate of the

electron sheets. For three different values of F the variations in
e'

the potential minimum as functions of time are shown on Fig. 17. The

mass ratio of 1 was used for these computations. The standard deviations

(STDE) of the potential minimum were calculated for the three cases

after they reached equilibrium. (See Fig. 17.) The results show that

the standard deviation of these fluctuations decreases when F is
e

increased, and it is approximately proportional to i/_r_ Since
e"

F is proportional to the average number of sheets in the diode, this
e

result agrees with the statistical law that holds for the standard

deviation of fluctuations about the mean of uncorrelated events. In

our case, the events are the positions of the charged sheets. These

are randomly distributed in the diode and uncorrelated because of their

random injection. Consequently, the fluctuations of the computer-

simulated diode are only shot-noise effects, and the average behavior

of the diode agrees with the basic solution that was calculated by a

dc theory.

With the circuit equivalent of the computer diode, it is possible

to observe the diode's behavior when an external circuit, different

from all :_A^I ..^i+ ........ _o _ connected to the diode Let us assume

that an ideal current source, with the current value of 0.3 times the

saturation current of the diode, is connected to the terminals Of the

circuit shown on Fig. 15. The calculations start with an empty diode

and with no potential difference across the emitters. During the first

time steps, because there are only a few sheets present, the convection

current through the diode is only a very small fraction of the saturation
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THE VARIATION OF THE POTENTIAL MINIMUM

THEORETICAL DC VALUE "r/m= - 1.61

POTENTIAL

MINIMUM NORMALIZED

TIME

I I I I I i L I I J.
I00 200

Fe = 50 STDE = .0787

'"Ik/ "J

POTENTIAL
_ MINIMUM NORMALIZED
I TIME

I ,, ; ,, ; II , ; , i , -"-

0 I00 200

/ [",= I00 STDE = .0499

IV

POTENTIAL

I MINIMUM NORMALIZEDTIME

to ' ' J ' I ' ' ' ' I "IO0 2OO

Ll F.= 400 STDE= .0275

FIG. 17. FLUCTUATION OF THE POTENTIAL

MINIMUM IN TIME FOR THE BASIC SOLUTION.

Increasing F means increasing sheet
e

concentration in the diode.

current; therefore, the major part of the total current has to flow

through the cold capacitance of the diode (see Fig. 15). The voltage

across this capacitance changes at each time step by the amount

Jdisp _T/Cd' where Jdisp is the current density in the capacitance,

and C d is the capacitance per unit area between the two emitters.

The direction of this current is such that the ion emitter becomes

positive with respect to the electron emitter, thus giving a forward

bias to the diode and causing the convective current to increase.

Since the current through the diode is constant, the increase of the

convective current causes the displacement current to decrease until

equilibrium is reached. The voltage vs time characteristic of this
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circuit is shown on Fig. 18. The parameters of the diode are the same

as the ones used before. The equilibrium state agrees again with the

dc calculated basic state.

_ CURRENT SOURCE :
/ \ _

÷!

I I I I I I

0 I00

J diode

Jsot
-0.3

I I

NORMALIZED
TIME

2O0

FIG. 18. THE RESULTS OF THE COMPUTER-

SIMULATED DIODE: The formation of the

basic solution with an ideal current

source connected to the diode.

We can conclude that the basic solution is a stable solution

under time-varying conditions, when either a voltage source or a current

source is connected to the diode. From the quantitative agreement

between the time-dependent and the dc states of the diode, it is apparent

that the computer model is a very good statistical approximation to the

theoretical model of the opposite-stream plasma diode.

C. THE BREAKDOWN OF THE PERIODIC SOLUTION

We know from dc theory that the periodlc solution is a self-

consistent dc solution of the opposite-stream diode. It is true that
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in the already described computer calculations only the basic solution
was present; still, we have to examine the stability of the periodic
solution in order to tell whether it could exist in the diode for a

considerable length of time. Using the dc theory and the computer

program of the dc states, we can accurately calculate the electric

field of the periodic solution as a function of position in the diode.

_ _ll1_ dc field is used to move the sheets in the diode, then these
sheets will be forced to follow the trajectories that the dc theory

predicts. Consequentlv... after_ th_.........._ql,illh_._,,,.... _+_+_of *_l_v.......u±uuv has

developed under these circumstances, the self-field of the sheets must

agree also with the predicted dc field. By this procedure the self-

consistent periodic state is set up in the diode. This procedure was

carried out on the computer model utilizing the fact that the sheets

could be moved by a prescribed field (see Fig. 12). The prescribed

field, i.e., the field of the periodic dc state, was calculated by

numerical integrations (see Chapter IV) and its values at the midpoints

of the segments fed into the computer program. These values were then

used to move the sheets in the diode instead of the calculated self-

field of the sheets. "

After the self-consistent state has been achieved, the diode may

now be allowed to arrange its state by its normal operation, i.e.,

the sheets may be allowed to move under the influence of their self-

field. We are interested in the behavior of the diode after its normal

operation has begun; therefore, we count time from the instant when the

sheets start to move under the influence of their self-field.

It seemed possible that an external circuit could influence the

stability of the periodic solution; therefore, both an ideal voltage

source and an ideal current source were used for these calculations.

The voltage source was simulated, as before, by the application of a

constant potential value (_2 = 1.6) across the emitters. The periodic

dc solution was set up for this potential difference, and then the

sheets were allowed to move under the influence of their self-field.

We could observe that the periodic solution changed rapidly into the

basic solution under these circumstances.
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Since the diode current of the periodic solution is higher than

that of the basic solution for the same potential difference, the

current vs time diagrams on Fig. 19 show this change clearly. These

curves are shown for three different mass ratios. The heavier the mass

of the ions, the longer it takes for the current to reach its basic

dc value. This long time effect is connected to the normal transient

behavior of the diode that is determined by the average transit time of

the slower particles. We have already shown that the average normalized

transit time of the ions is of the order of 40 _mi/m e. This indicates

(see Fig. 19) that the current reaches its basic value within a time

interval not larger than three times the average transit time of the ions.

Jdiode

Jbasic

i
0

J diode

Jper÷1

J basic

I

0

.l

Jbaslc

VOLTAGE SOURCE: .,7= = 1.6

( DIFFERENT MASS RATIOS)

mi/me=l

i I I I i I
IOO

NORMALIZED
TIME

'
mi/m e = 4

I I I I I
I00

Jdiode

Ope......_._rr__._._..----'--_. mi/m,,= 16

NORMALIZED

TIM_

2OO

NORMALIZED

I I I I I I I I I TIMIE =
I

0 IOO 200

FIG. 19. THE BREAKING UP OF THE INITIALLY

SET UP PERIODIC SOLUTION AS SHOWN BY THE

DECREASE IN THE CURRENT VALUE THROUGH THE

DIODE. Three different mass ratios are used.
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The disappearance of the periodic type of solution, i.e., the

disappearance of the two periodic extrema, occurs in a much shorter

time than the diagrams on Fig. 19 indicate. This fact is demonstrated

on Fig. 20, where the potential distribution of the diode is shown at

different times during the transformation of the periodic solution.

POTENTIAL PROFILESINTHE DIODE

t:NORMALIZEO TIME

",.... / \ / i

r-2o T.3O

:-70 _"80

l\jl .... i

_- 9o

FIG. 20. THE BREAKING UP OF THE INITIALLY SET UP

PERIODIC SOLUTION AS SHOWN BY THE POTENTIAL PROFILES

IN THE DIODE AT DIFFERENT TIMES.

/m = 16 After 70 timeThese curves are shown for the mass ratio m i e

steps the periodic extrema have disappeared. This short time interval

depends on the electrons and is not influenced by the mass of the ions,

for it is the same for the lower values of the mass ratio.

We pointed out in our dc analysis that at these two extrema the

spatial derivative of the space-charge function is discontinuous.

Consequently, the discontinuities cause instabilities at these points

and the distribution of the electrons is rapidly rearranged. During

this small time interval, the distribution of the heavy ions has not

changed much, and the electron current-limiting minimum is still at

its periodic value. The current even increases initially, because the

excess amount of electrons that has been depressing the potential at
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the periodic minimumthen leaves the diode space rapidly at the plane
of the ion emitter. After this initial rearrangement of the electron

sheets, the nonperiodic profile changes its shape as the minimum and

maximum become more prominent. The consequence of this change is the

decreasing of current through the diode. This slow time effect occurs

similarly in the change of the current when the voltage is changed

across a diode that is already in equilibrium. In this case, the basic

type of profile remains in the diode at all times; only the potential

minimum and maximum are taking up different values. This is the

reason why we called the long time effect in the diode its natural

transient behavior.

When a current source is used, it is the voltage across the

emitters that shows whether the periodic or basic solution is present

in the diode. For the same value of current, the applied potential of

the basic solution is larger than that of the periodic solution. The

potential across the diode as a function of time is shown on Fig. 21.

At time T = 0, the periodic solution has already been set up as in

the earlier cases. From this time on, the current is held constant

and the potential across the emitters is allowed to change. The

change in the potential at each time step is determined by the displace-

ment current in the diode with the assumption that this displacement

current is zero initially.

+i

_per

"r}2 J diode
_/basic CURRENT SOURCE " Jsat

mi/me : 4

/
----T-, ,J, I
0 I00

I I

: 0.655

NORMALIZED

TIME

, , I
i l I

2OO

FIG. 21. THE BREAKING UP OF THE PERIODIC

SOLUTION (WHEN AN IDEAL CURRENT SOURCE IS

CONNECTED TO THE DIODE) AS SHOWN BY THE

INCREASE IN THE DEVELOPED POTENTIAL ACROSS

THE DIODE.
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The diagram on Fig. 21 shows that the periodic solution changes

again into the basic solution. The disappearance of the periodic

extrema is not influenced by the external circuit, for it again takes

approximately 70 time steps. This result is consistent with our

earlier explanation of the transformation of the periodic solution,

since this transformation is not connected to the normal transient

_ffects of the diode but to internal instabilitie_ which cannot be

influenced by an external circuit.
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VII. THE EXPERIMENTAL OPPOSITE-STREAM PLASMA DIODE

Experimental data supply the most conclusive proof of a theoretical

analysis that predicts the behavior of a physical device. The _experi-

mental" results of the computer-simulated diode have already given us

proof that the theoretically calculated, basic dc solutions are stable

under time-varying conditions, hence their existence in a physical

device can be expected. The agreement between theory and experiment

depends on how well an ideal theoretical situation can be materialized

in the laboratory. The theoretical model of the opposite-stream diode

was well suited for our experiment inasmuch as a thermionic ion emitter

was available to the Electron Device Laboratory (a thermionic electron

emitter is the most commonly used component of laboratory experiments).

A. CONSTRUCTION OF THE DIODE

The two major assumptions of our theory are one-dimensional flow

and collisionless conditions. A parallel-plane construction of the

diode is a good approximation to a one-dimensional model only if the

separation of the emitters is smaller than their area, so that the

effect of the fringe fields can be neglected. The collisionless condi-

tions are realized by a low background pressure of neutral atoms and by

keeping the separation distance of the diode much smaller than the mean

free path of the particles. Consequently, our aim is to keep the

distance between the emitters as short as possible.

The design of the diode is determined by the available form of the

ion emitter. The construction and the properties of the lithium-ion

emitter, called the "spodumene button," are described in great detail

in reports of the Stanford Electronics Laboratories. (See pp. 1-33 and

1-41 in Ref. 21; and Ref. 23). The basic material of the ion emitter,

spodumene, is a glasslike material that emits lithium ions when heated

above 900 °C. The maximum safe operating temperature of this emitter

is 1200 °C. The emitter is cylindrically shaped, with the emitting

surface ground flat. Heating is provided by a zigzag platinum wire that

is imbedded in the spodumene. The heater wire is running back and

forth in a plane that is parallel to the emitting surface and placed at
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the middle of the cylindrical button (see Fig. 22). The diameter of a

button is typically 0.3 in.; its length is approximately the same.

In the spodumenebuttons used in our experiments a second zigzag

wire was also imbeddedin the material near the emitting surface. The

exposed ends of this second wire were welded to a cylindrical heat shield
which surrounded the button. The inside diameter of the heat shield was

0.375 in. Electrical contact to the emitter wasmadeby the imbedded

second wire through the heat shield.

Since the diode has a para!!cl-plane con_iruction, the surface

areas of the electron and ion emitters have to be equal. In order to

insure a uniform field distribution in the diode, the emitters were

similarly constructed (a cylindrical emitter surrounded by a heat

shield). The separation between the emitters was 0.i in. This gave a

ratio of 3:1 between the diameter and the length of the diode, which is

a reasonably good approximation to the one-dimensional model.

At this small distance from the spodumene button, a pure metallic

electron emitter could not be used because the radiation heat from it

would have melted the face of the button. Hence, it was necessary to

use an oxide-coated cathode. This cathode, a cylindrical cup, was

pressed out of a 0.005-in.-thick, pure nickel sheet. It was 0.5 in.

long and had a diameter of 0.27 in. The bottom of this cup was sand-

blasted and sprayed evenly with barium-oxide cathode coating. The cup

was heated from inside by a heavy tungsten heater that was insulated

from the emitter by high-purity alumina parts (see photograph of the

heater assembly in Fig. 23). The emitter was supported at the back by

a stainless steel band to which the heat shield was also welded.

Electrical contact to the emitter and to the heat shield was made

through this steel band.

The use of an oxide-coated cathode for the electron emitter created

two difficulties. First, the cathode had to be activated, and during

the activating procedure the ion emitter had to be shielded from it.

Secondly, the applied voltage across the diode had to be limited, since

oxide cathodes are poisoned easily by ion bombardment. It was found

by earlier experiments that noticeable poisoning sets in when 20 v is
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FIG. 23. HEATER ASSEMBLY FOR THE INDIRECTLY 
HEATED, OXIDE-COATED CATHODE. 

a p p l i e d  a c r o s s  t h e  emitters.  Consequen t ly ,  d u r i n g  t h o s e  expe r imen t s  

which a r e  r e p o r t e d  h e r e ,  t h e  a p p l i e d  p o t e n t i a l  had t o  b e  k e p t  below 

t h i s  v a l u e .  

The ion  emitter h a s  t o  be s h i e l d e d  d u r i n g  t h e  a c t i v a t i o n  of t h e  

c a t h o d e  because  gases r e l e a s e d  from t h e  s u r f a c e  of t h e  e l e c t r o n  emitter 

would d e p o s i t  on t h e  b u t t o n  and i n f l u e n c e  i t s  e l e c t r i c a l  c h a r a c t e r i s t i c s .  

A l s o ,  i t  is a good p r a c t i c e  t o  draw a large e l e c t r o n  c u r r e n t  from t h e  

ca thode  d u r i n g  and immediately a f t e r  a c t i v a t i o n ,  f o r  t h i s  s t a b i l i z e s  t h e  

emis s ion  p r o p e r t i e s  of t h e  ca thode .  Both t h e s e  f u n c t i o n s  can  b e  execu ted  

by a metal d i s k  t h a t  is p l a c e d  i n  t h e  d i o d e  s p a c e  d u r i n g  a c t i v a t i o n .  

I t  is a s l i g h t  t e c h n i c a l  problem t o  c o n s t r u c t  t h e  s h i e l d  i n  s u c h  a way 

t h a t  i L  can be removed from t h e  d i o d e  space a f t e r  a c t i v a t i o n ,  s i n c e  t h e  

d i o d e  i s  p laced  i n  an  evacua ted  b e l l  j a r  d u r i n g  i t s  o p e r a t i o n .  W e  used  

a O.OOl-in.- thick c i r c u l a r  d i s k  w i t h  1 i n .  d i a m e t e r  t h a t  c o u l d  b e  

r o t a t e d  i n t o  t h e  middle  o f  t h e  d i o d e  s p a c e  by a t h i n  r o d  (see pho tograph  

of t h e  d i o d e  i n  F i g .  2 4 ) .  The c r o s s b a r  a t  t h e  end of t h e  rod  w a s  made 

of magnet ic  m a t e r i a l ;  and t h e  d i s k  c o u l d  be r o t a t e d  i n  and o u t  o f  t h e  

d i o d e  space  by a powerfu l  magnet p l a c e d  o u t s i d e  t h e  b e l l  j a r .  The 

magnet was removed, n a t u r a l l y ,  when t h e  measurements  were t a k e n .  
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FIG. 24. PHOTOGRAPH OF THE EXPERIMENTAL 
OPPOSITE-STREAM PLASMA DIODE WITH THE 
SEPARATING DISK REMOVED FROM THE DIODE 
SPACE. The e l e c t r o n  emi t te r  i s  a t  t h e  
l e f t ,  oppos ing  t h e  i o n  emitter.  Both 
are su r rounded  wi th  h e a t  s h i e l d s .  

B .  THE EXPERIMENT AND ITS RESULTS 

The d i o d e  ( F i g .  2 4 )  was p l a c e d  i n  t h e  b e l l  j a r  of  a vacuum pump 

s t a t i o n .  Cont inuous pumping w i t h  a d i f f u s i o n  pump p r o v i d e d  a n  i n d i c a t e d  

p r e s s u r e  of 10 mm Hg. Though t h e  p r e s s u r e  i n  t h e  d i o d e  s p a c e  was 

p r o b a b l y  h i g h e r  t h a n  a t  t h e  p o i n t  where t h e  p r e s s u r e  gauge w a s  p l a c e d ,  

t h e  d i f f e r e n c e  w a s  less t h a n  t w o  o r d e r s  of magni tude.  The mean f r e e  p a t h  

of t h e  p a r t i c l e s  a t  mm Hg is  s t i l l  of t h e  o r d e r  of 10 c m ,  hence 

t h e  s e p a r a t i o n  d i s t a n c e  of 0 . 2 5  cm i n s u r e d  c o l l i s i o n l e s s  o p e r a t i o n .  

-7 

The experiment  began w i t h  tne a c i i v a i i u i i  of the e n t k d e .  The 

t e m p e r a t u r e  of t h e  n i c k e l  cup was r a i s e d  s l o w l y  up t o  1050 O C ,  w h i l e  

t h e  s e p a r a t i n g  d i s k  was k e p t  i n  t h e  d i o d e  s p a c e .  The cup was a t  ground 

p o t e n t i a l ,  and d u r i n g  a c t i v a t i o n  20 v was a p p l i e d  t o  t h e  d i s k .  The 

t e m p e r a t u r e  of t h e  e l e c t r o n  emit ter  w a s  r a i s e d  SO s l o w l y  t h a t  t h e  

p r e s s u r e  i n  t h e  b e l l  j a r  c o u l d  no t  r ise  above 5 x 10 mm Hg. A f t e r  

h o l d i n g  t h e  t e m p e r a t u r e  of t h e  emitter f o r  10 min a t  1050 OC, i t  w a s  

-6 
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lowered to 900 °C. The temperature of the electron emitter was held

at this value for the later part of the experiment. Before data were

taken, the potential of the disk was set to a value that yielded 20 ma

electron current. The activation of the cathode was completed by

continuously drawing this current from the emitter for several hours.

When the voltage-current characteristics of the opposite-stream

diode were measured, it was necessary to use pulsed measurements in

order to eliminate a potential difference between the second zigzag

wire and the face of the ion emitter button. Under dc conditions, this

potential difference was drifting slowly in time which made it impossible

to obtain consistent data. The probable cause of the drifting of this

potential difference is the depletion of lithium in the spodumene button.

This subject is currently under investigation at Stanford.

Pulses with 10-_sec duration eliminated this difficulty. The

transient effects in the diode could be neglected for these measurements,

for the average transit time of the ions was only a small fraction of a

microsecond. The voltage range of these pulses extended from 0 to 15 v.

The current pulses were measured across a 1-ohm resistor by an oscillo-

scope.

i. Determination of the Effective Area of the Diode

Our purpose is to show that the basic solution is present in the

experimental opposite-stream diode by comparing the current in the

diode with its theoretically calculated values. The dc parameters of

the diode are determined as follows. The separation distance, the

temperature of the emitters, and the applied potential across the diode

are measured; the saturation currents of the emitters are estimated.

Since the electron and ion currents in the diode are much smaller than

the saturation currents of their respective emitters, even a large

error in the saturation current of either emitter would not influence

the calculated dc current. The dc parameters above determine the

theoretical current density in the diode for the basic solution. In

order to convert current density to current, we need to know the cross-

sectional area of the diode.
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2
The oxide-coated surface of the nickel cup has an area of 0.37 cm .

The effective area of the emitter is larger than this value, because

electrons fill up the space between the cup and the heat shield. Since

the cup is welded to the heat shield, and the difference in the work

functions of the oxide coating and the heat shield biases the heat shield

positive, electrons will flow to the heat shield from the emitter. When

potential is applied across the diode, electrons leave their emitter not

only from the oxide surface but also from the space between the emitter

and the heat shield. The low current that flows in the diode is

associated with a large space-charge cloud of electrons near the electron

emitter, hence the space charge and this cloud around the nickel cup

increase the effective area of the emitter. It follows from this argu-

ment that the effective area of the emitter is smaller than the area

that is enclosed by the heat shield (0.678 cm2).

The effective area of the electron emitter could be determined

from the calculated dc current density and the measured current that

flows between the separating disk and the electron emitter. When the

potential of the disk was 10.2 v, the electron current through this

short electron diode was 2.43 ma. The contact potential was approximately

1 v (see next section for details about contact potentials), hence the

true applied potential between the emitter and the disk was 10.2 - 1 =

9.2 v. The other dc parameters were:

Temperature of the electron emitter: T = 1170 °K
e

Separation distance: d = 0.142 cm

Saturation current density (assumed): J = 0.i amp/cm 2
se

The theoretical de current density of an electron diode with these

parameters is 4.76 ma/cm 2. (This figure was calculated by the computer

program of the dc states.) Hence the effective area of the electron

emitter was:

2.43 ma 2

Aeff = cm 2 = 0.51 cm
4.76 ma/
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This figure was used not only for the area of the electron emitter, but

also for the effective area of the experimental diode, since the two

emitters were similarly constructed and we could assumethat our diode

approximated a one-dimensional model.

2. Determination of the Contact Potential

The contact potential in an experimental diode is the difference

between the potential that is applied across the terminals of the

device and the potential that actually acts on the charged particles

in the diode space. This difference is caused by the dissimilar work

functions and mass constants of different emitting materials, by thermo-

electric effects and by contact potentials between metals and semi-

conductor types of materials. Our theoretical data are calculated for

the actual potential difference between the emitters, or between the

electron emitter and the metal disk; therefore, for each measurement

the applied potential had to be corrected by the value of the contact

potential. We can express the exact relationship between the applied

and true potential in the diode by the following expression:

V2 = Vappl - Vcont (78)

where V 2 is the true potential across the diode, Vappl is the

potential applied across the terminals of the diode, and Vcont is the

contact potential by definition.

The relationship Jdiode = f(V2) was calculated by numerical

integrating methods (see Chapter IV) for the basic solution. We assume

that the experimental curve fol_ows the same law, i.e.,

Jexp (Vappl) : f(Vappl - Vcont) (79)

where V is a constant. The value of V is determined by
cont cont

fitting the experimental curve to the theoretical curve at the point

V 2 = 0. The theoretical curve gives a current value for V 2 = 0, which

is Jdiode(0). When the contact potential is applied across the

terminals of the diode, the current across it is Jdiode(O), or
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Vcont = Vappl

%xp(°) = Jdiode(O)

(80)

3. The Corrected Experimental Data

a. Measurements of the Electron Current Only

We have shown already that the experimental curve for the

electron diode was fitted to the theoretical curve at 9.2 v true

potential across the diode. The two curves are fitted also at zero

applied potential when the contact potential for the electron diode is

determined. The theoretical short-circuited electron current between

the oxide cathode and the separating disk was ii0 _a. In order to

obtain this current value, the separating disk had to be at 0.98 v with

respect to the electron emitter. According to Eq. (80), the contact

potential for the electron diode was 0.98 v.

Other points between 0 and 9 v were determined both by the

experiment and by numerical computations. One of the solid lines on

Fig. 25 is the theoretically predicted voltage-current characteristic

of the electron current only. The experimentally measured points follow

closely the theoretical curve, showing that our assumptions that the

diode is collisionless and one-dimensional are well approximated in this

voltage range.

b. Measurements on the Opposite-Stream Diode

In order to measure the voltage-current characteristics of the

opposite-stream diode, the separating disk was removed from the diode

space and the spodumene button was heated to 900 °C. Pulses of i0 _sec

were used with 60-cycle repetition rate for the measurements. The shapes

of thc current and voltage pu!se_ were identical and there was no delay

time between them. This fact showed that the transients in the diode

died out within a fraction of a microsecond.

The effective area of the opposite-stream diode was assumed to

be the same as that of the electron emitter because of the similar

constructions of the two emitters. On the basis of earlier measurements

of the saturation current of the spodumene buttons (see Ref. 23), we
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FIG. 25. THE EXPERIMENTAL DATA. (Solid lines are theoretical curves.)

assumed an ion saturation current density of i0 ma/cm2.- Hence the dc

parameters of the diode were the following:

Temperature of electron emitter: T
e

Temperature of the ion emitter: T.
1

Saturation current density of

the electron emitter (assumed): J
se

Saturation current density of

the ion emitter (assumed): J
si

Separation distance: d

Cross-sectional area of the diode: A
elf

Mass ratio:

= 1170 °K

= 1170 °K

= 0.i amp/cm 2

= i0 ma/cm 2

= 0.302 cm

2
= 0.51 cm

-5

me/mi_ = 7.93 x i0
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The voltage-current characteristics of the opposite-stream diode, with

the above dc parameters, were computed by our dc theory. The resulting

curve is shown as a solid line on Fig. 25.

The contact potential of this opposite-stream diode was

determined again following the procedure outlined in Sec. B2 above.

The theoretical short-circuited dc current for this diode was 159 _amp.

In order to obtain this value 4.3 v had to be applied across the terminals

of the diode, hence 4.3 v was the contact potential in this case.

The true potential across the diode was corrected (see Eq. (78))

again for each measurement, and the experimental points plotted on

Fig. 25. Measurements were taken up to 18 v applied potential, i.e.,

13.7 v corrected potential. The experimental data follow the theoretical

curve remarkably well. Since the experimental curve is fitted to the

theoretical curve only at the point of zero potential (this point is

at -o0 on the diagram), the results of these experiments prove

unquestionably that the basic dc solution is present in the diode. No

sign of instability, or increased current value was found. The close

agreement between experiment and theory shows also that our experimental

device was successfully approximated by our theoretical model.
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VIII. CONCLUSIONS

We started the analysis of the opposite-stream plasma diode with

an attempt to find all dc solutions that were consistent with our model.

In order to prove the existence or nonexistence of different dc states

in our diode, we had to find a rigorous mathematical treatment for this

problem. We have found such a treatment by introducing symbolic functions

into the solutions of our differential equation. In the process of

solving our problem we found the three forms of the velocity distribu-

tion functions that could be applied to the general four-stream plasma

diode. In future analyses these forms might help to find all possible

dc states of the general case, though this work will require considerably

more effort than we needed in applying our methods to the opposite-

stream diode.

We have found all the possible dc states of the opposite-stream

diode and have shown that a fundamental dc solution (the basic solution)

always exists in our model. A numerical program was constructed that

could accurately calculate the dc states of an arbitrary opposite-

stream diode.

It was found that periodic types of potential functions could also

exist as dc solutions to our opposite-stream diode. We presented

diagrams from which the existence or nonexistence of these periodic

solutions could be determined.

We found a clue to the question of stability of the dc states when

we observed that the spatial derivative of the space-charge function

became discontinuous for the periodic types of dc solutions. Up to the

present time, authors have neglected to point out the importance of the

derivative of the space charge in several papers that dealt with the dc

states of various plasma diodes (see Refs. 6-10). The continuity or

discontinuity in the derivative of the space-charge function is deter-

mined by dc analysis; therefore it should be required that this

derivative be continuous whenever stable dc solutions are sought.

The stability of the dc states was checked by simulating the model

of the opposite-stream diode on a computer. We have developed a computer

program that is able to handle i0,000 sheets simultaneously. Because of

the large number of sheets in the computer-simulated diode, this program
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represented a good statistical model of a physical device and its

equilibrium state agreed with the theoretically calculated basic dc

state of the diode.

The computer model also showed that discontinuities in the deriva-

tive of the space-charge function made the periodic types of dc solutions

highly unstable. This result confirmed the conjecture that this

derivative plays an important role in the stability of dc states; it has

to be continuous when the state is stable.

We have also constructed an experimental opposite-stream plasma

diode, using a solid-state, thermionic, lithium-ion emitter (spodumene)

and a barium oxide-coated electron emitter. Since the contact potential

between the emitters was not known, the experimental data had to be

matched to the theoretical curve at one point. We selected the value

of zero applied potential for this point and obtained excellent

agreement between experimental and theoretical data for other values of

the applied potential. These measurements demonstrated that the basic

dc solution was set up in the experimental diode and that our theoretical

dc analysis, including the necessary stability considerations, had

correctly predicted the behavior of the physical device.

There are great possibilities in applying the computer model to

other types of one-dimensional plasmas, because it can be made suitable

for a large variety of boundary conditions without essential changes

or complications in the computer program. The data obtained by these

computer "experiments" describe every physical aspect of the model. We

extracted only those data which were relevant to our theory, but future

applications of the computer program could include impedance measurements,

wave propagation and other desired physical properties of one-dimensional

plasmas.
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APPENDIX A. DESCRIPTION OF THE COMPUTER PROGRAM

FOR THE DC STATES

In Sec. D of Chapter III, we outlined the procedure for calculating

the dc characteristics of an opposite-stream diode from its known param-

eters. Since this procedure consists of numerical methods and logical

operations, it is well suited for digital computers. We have used

Burrough's algorithmic language to write a computer program which per-

forms all the required functions of this procedure.

In the problem considered, the following seven parameters of the

diode are given: Jsi' Jse' Ti' Te, V 2, d, and m./me.1 From these

parameters we have to calculate Vmin, Vmax, which then determine the

potential function in the diode completely. If Vmi n and Vmax are

known, any quantity related to this diode can be calculated.

It was shown in Chapter III that the solution of this problem

breaks down into two steps:

i. Determining the applicable potential type for the problem, and

2. Setting the parameters of this potential form such that the total

separation distance calculated from three integrals agrees with

the given separation distance d.

i. The Normalization Procedure

It is convenient to use the normalization procedure of Chapter III

to reduce the number of input parameters. If we assume that the current

densities are given in amperes per centimeter squared, the temperatures

in degrees Kelvin, the potential in volts, and the distance in centi-

meters, the constants of the problem can be calculated by the following

expressions:
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(A.I)

11600V 2

_2 - BeT e

_2 =

d V/Jse

1.0878 × 10 -6 _ev/Te_e

2. Subroutines of the Program

In order to find the normalized transition lengths _A and
max

_D , we need to use two subroutines. These are the functions
min

G-(x), G+(x) and the integral procedure.

a. The Functions G-(x), G+(x)

-" _-/--_ ..... d _-_ by P- (QQ)Tne function u k_/ wao ........ _. __ :

G-(x) = exp (X) • (1.0 (A.2)
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It is not possible to use the above expression for the numerical

evaluation of G-(x) because cancellation occurs for x values larger

than 2.0. We have used a power series to approximate G-(x) for

0 _ x _ 2.0, and an asymptotic series for x > 2.0. We have matched

the two series at x = 2.0 so that G-(x) is continuous at this point.

The error of this approximation is smaller than O01 percent. The

numerical values of the two series are listed in the text of the BALGOL

program (see Appendix B).

The function G+(x) can be expressed by the functions G-(x)

and exp (x) as follows:

G+(x) = 2.0 exp (x) - G-(x) (A.3)

b. The Integral Procedure

We showed in Chapter III that the separation length of the

diode can be calculated by three definite integrals [see Eq. (36)]. The

integrands involve the G-(_) and G+(_) functions and the three param-

eters, _m' QM and 7, which have to be determined before the integration

can be carried out. For the potential types B, C, and D, the value of

7 is fixed such that the integrands approach infinity when the variable

approaches the limits of the integration.

Since the subroutine for calculating separation lengths is used

many times in the program, the method of calculating definite integrals

of the types shown must be efficient and accurate. Gauss's three-point

quadrature formula is used for the integration procedure [Ref. 24].

In general, we have to evaluate an integral expression of the

form:

t f(x) -_ const as x -> A

.B Vx - A

JA f(x) dx when (A.4)

f(x) -> const as x -> B

/B - x
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Gauss's three-point formula is

A f(x)_x _ (B - A)IclflaxI + B(l.0- Xl)]

÷ co flax0 ÷ B(1.0- %)]

+ cI f(A(l.0- xI) + Bxl]] (A.5)

When f(x) is a smooth function,

c I = 0.27777778

c o = 0.44444444

X 1 = 0.88729833

x 0 = 0.5

Despite the fact that the points x = A, x = B are avoided, the result

is still accurate for smooth functions. In our case, we have to trans-

form the variable of the integral to eliminate the singularities of

f(x) at the end points. As we shall show, this transformation will

only change the values of Cl, Co, x I and x 0.

We can use the transformation,

B+ A B- A

x - 2 + _ sin y (A.6)

Substituting Eq. (A.6) into the integral expression, we get

jA [ ( ) 1
2 -_/2 f B +__.___A B - A

2 + _ sin y cos y dy (A.7)
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We define ¢(y) as

_<_>'_<_+_ _ /+ _ sin y cos y
(A.8)

The function ¢(y) is not singular at either end point; therfore we

can use Gauss's formula for this function. This gives

/_ _-_ I _/_ _-A I I_ _:_.o-_>1
f(x) dx - 2 -_/2 ¢(y) dy _ 2 _t c 1 ¢ _ x 1 -

Equation (A.9) can be simplified:

f(x) dx "-'" 2 Z ci¢ _Xl 2 + c0¢ ZXo _1+c_o[-_-_x_ll<_._°>

After substituting the values of Cl, Co, Xl, x 0

can find the required expression for the function

(A.8). The new formula will be

into Eq. (A.10), we

f(x) by using Eq.

f(x) dx ----(B -A) c_f[Ax_ + B(I.0 - xl)]

T !

+ c o f[Ax 0 + B(I.0 - x_)] + clf[A(l - x I) + Bx I]

(A. ii)
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where

' = 0.15128136cI

' = 0.69743728
co

x I = 0.03101407

' =0.5
x 0

The integral expression in Eq. (36) is divided into three

regions. Each of the three regions is divided into "N" equal intervals,

and in every small interval we applied the derived three-point formula.

The number of these small intervals depends upon the accuracy desired.

The sum of these partial integrals gives the total integral; or, if we

wish, these partial integrals can be used to read out a tabulated form

of the potential as a function of distance.

3. Determination of the Type of Potential Solution

We follow the procedure described in Sec. IIID to calculate the

normalized transition lengths of a given diode. First we evaluate

Eq. (38) which determines whether the diode is electron-rich, ion-rich,

or neutral. Hence, depending on the value of the expression in Eq. (38),

the transition lengths are _AB and _BD for the electron-rich case,

_AC and _CD for the ion-rich case, and _AD for the neutral case.

To calculate any one of these transition lengths, we have to determine

_m' _M and 7 for the case in question and then evaluate the three

integrals in Eq. (36). For the cases _AB' _AC' and _AD' the calculation

of _m' _}_' and 7 consists of evaluating the expressions given in

Table 1 of Chapter III. Since only one of these three transition cases

can be present in the given diode, we set the other two transition

lengths equal to zero. Then, in general, _A = _AB + _AC + _AD"
max

We used N = 15 and obtained results with four-digit accuracy.
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For the determination of the transition lengths _BD or

three parameters _m' qM' and 7 have to be calculated again.
indicates that we have to use an iteration procedure to find

an equation of the form _T = f(qT )' i.e., Eqs. (41) and (42).

that qT _ q2' hence we can form the following sequence:

qTl = f krl2)

qT2 = f(qT1 )

_CD' the

Table 1

qT from

We know

(A. 12)

!IT(N+I) : f[_;T(N)]

where the function f(qT) is given by Eq. (41) for the B-D transition

case, and by Eq. (43) for the C-D transition case. The factor qT(N+I)

is a solution if the error, i.e., the absolute value of the difference

qT(N+I) - qT(N)' is less than a prescribed small positive number. In
% f

general, we set the error less than some percentage of the difference

qT(N+I) - q2" In all the examples that we have calculated, this itera-

tion procedure converged in five steps.

When qT is known, the parameters qm' riM' and 7 can be calculated,

using the corresponding expressions given in Table 1. We evaluate Eq, (36)

again and thus determine [BD for the electron-rich diode and [CD for

the ion-rich diode. Setting that transition length equal to zero, which

does not apply to the given diode, we calculate _D . by the sum
min

_D = _BD + _CD + _AD" After the values of _A and _D are
min max min

known, the determination of the type of the potential function is possible.

If _2 > _D , type D has to be used for the solution. If _2 < _A '
min max

the type A solution is applicable. Finally, if _A < _2 < _D '
max min

type B or type C is the right potential form depending on whether the

diode is electron-rich or ion-rich.
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4. Determination of the Inside Parameters of the Solution

It was shown in Sec. IIID that once the type of potential function

is known, there is a one-to-one correspondence between qT or 7 and

the value of Eq. (36), which is the calculated separation distance of

the diode. We have to use the method of successive approximations to

find the right value of the independent parameter for a given separation

distance _2" For each potential type the problem is equivalent to

finding the root x = x 0 for a given YO in the equation YO = f(Xo)'

where f(x) is a function which cannot be inverted. Even though the

four types of potential solutions have different functional forms, we

can choose the variables x,y in such a manner that the function f(x)

is monotonic, nonnegative, and starts at the origin. We have to con-

sider three different cases in order to choose the variables x,y for

the four types of the potential function.

a. Type A Solution

For a type A potential function, only 7 can change, and

qm = O, hM = _2" Table 2 shows that there is a lower limit on 7" If

7min , the variable x is defined by thewe call this limiting value

expression

i (A.13)X --

7 - 7mi n

When x approaches zero the separation length approaches zero also,

since 7 must approach infinity. Consequently, we can set the variable

y equal to the calculated transition length.

b. Type B and Type C Solutions

The variable parameter is _T for the type A and B solutions.

The calculated separation distance is always larger than that of the

transition case, _A , which was calculated in the first part of the
max

program. In addition, _T _ _2; and _T becomes equal to TI2 only at

the transition point. If we denote the integral expression that cal-

culates the separation length for type B or C solutions as IB,C(_T),
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our variable x becomes x = _T - _2 and y is given by

Y = fB,C (x) = IB, C (qT) - _A
max

c. Type D Solution

The procedure used in the type D solutions is similar to that

used in each of the other three cases. For the type D solution,

_2 _ _D The factor qT is always larger than the qT value that
min

corresponds to the B-D or C-D transition case. We had to calculate

this _T in the first part of the program. If we call this value of

_T' _T , then x is defined as x = _T - _T The function

min _ min

fD(x) is defined by the expression Y = ID(X) - _D , where ID_qT)'_Y
min

is the integral expression for the type D solution. Again we have to

find the root x 0 for the equality YO = fD(Xo ) where YO is given

and fD(x) is a monotonically increasing function of x starting at

the origin.

d. Finding x 0 for the Equation YO = f(Xo)

The monotonic function y = f(x) and its value Y0 are given.

To find the root Xo, we start with a trial value of x, called Xtry

and calculate the corresponding value of y, called Ytry" If Ytry does

not differ from Y0 more than a prescribed percentage of YO' we have

obtained the solution. From the value of Xtry we can calculate qT

and all the other inside parameters of the diode. However, we cannot

expect to find the right x at the first trial, therefore we want
try

to find a new trial point which is closer to the desired solution than

the point obtained before. We have written a subroutine called

"CORRECT" which supplies the new trial point in a systematic manner.

After entering into CORRECT, we calculate the new Ytry for the given

Xtry and test this Ytry to see if it is sufficiently close to YO"

If the agreement is not close enough, we enter in CORRECT again, and

follow this sequence until an acceptable solution is obtained.

Subroutine CORRECT consists of two methods which are commonly

used for finding roots of equations. One method is linear interpolation

or extrapolation, the other method is interval-halving. The linear-

interpolating method can be described as follows.
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Twopoints are obtained on the curve y = f(x), and two cases

are possible:

1.

2.

One point is at the origin and the other is below the root

that has coordinates (Xl, yl) ,

One point is above the root with coordinates (x2, y2) and

the other is below the root with coordinates (xl, yl ).

The conditions on the coordinates of these points are Yl < YO < Y2'

which implies that x I < x 0 < x 2. We can obtain these points in the

subroutine from the current trial point which has coordinates Xtry ,

Ytry" If the trial point is below the root, i.e., Ytry < YO' we set

Xl = Xtry' Yl = Ytry' and proceed with the determination of the new

trial point. If the trial point is above the root, Ytry > YO' we set

x2 = Xtry' Y2 = Ytry' and calculate the new trial point from the values

of Xl' YI' x2' and Y2" If during the iterating process we find no

trial points above the root, we have values only for (Xl, yl). In

this case we extrapolate from the origin, and obtain the following

expression for the new trial point:

x 1

Xtry = Y0 71 (A.14)

If points are found above the root as well, we calculate the new trial

point by the current values of (Xl, yl) and (x2, y2) as follows:

x 2 - x 1

Xtry = Xl + (Yo - Yl ) (A.15)
Y2 - Yl

We have described the linear-interpolating method, which is convergent

for any monotonic function. In our case, however, we found the con-

verg_n_e very _v_1..... I"....._mo_y......... _t_nees we were not able to obtain results

with 0.i percent accuracy less than 40 iteration steps. We found a very

efficient way to speed up the convergence of this method considerably.

Before obtaining the points (Xl, yl) or (x2, y2) from the

current values of Xtry and Ytry' we store Yl or Y2 respectively by

setting its value equal to Y3' This means that if the trial point is

above the root, we set Y3 = Y2 and then perform the substitutions
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x2 = Xtry' Y2 = Ytry" If the trial point is below the root, we set

Y3 = Yl first and proceed as before, setting x I = Xtry and Yl = Ytry"

In the first case the expression (Y3 - Y2)/(Y3 - Y0 ) is a measure of

the speed of the convergence of the linear-interpolating method. When

y2--which is the last trial value--is near to the value of Y0' the

linear interpolation is successful and the value of the above expression

is near unity. When Y2 is near to y3--which is the trial point of

the succeeding step--the linear-interpolating method does not converge

rapidly and the value of the above expression is near to zero.

Consequently, when the value of (Y3 - Y2)/(Y3 - Y0 ) is near unity, we

want to proceed with linear interpolation; when its value is zero, we

halve the interval to find the new trial value of x. The following

expression performs both functions:

(xl+x2)(y3y2)Xtry = 2 1 Y3 - Y0
x I +

x 2 - x I

Y2 - Yl l(y3y2)<y0-Yl) 70

After simplification Eq. (A.16) becomes

1
x

try 2 Xl+ x2+

(Y3 - Y2)(2Yo - Yl - Y2)(x2 - Xl)

(Y3 - Yo)(Y2 - Yl )

(A.17)

In the second case the trial point is below the root. The roles of Y2

and Yl are interchanged and the important factor is (Y3 - Yl)/(Y3 - Y0 )"

If we can use the interpolating formula (i.e., if the points above the

root have already been obtained in the preceding steps), then the formula

for the new x is similar to that of Eq. (A.17).
try

1 _ (Y3 - Yl)(2Yo - Yl - Y2)(x2 - Xl) 7/

Xtry - 2 [Xl + x2 + (Y3 - Yo)(Y2 - Yl ) J (A. 18)

If the extrapolation formula is used, we can speed up convergence by

multiplying Eq. (A.14) with the factor (Y3 - YO)/(Y3 - Yl )" This
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factor becomes large if the extrapolating procedure does not converge

rapidly, but it is unity if the convergence is good.

We have covered all the possible cases of this iterating

procedure except the first two steps, in which a value to Y3 is not

yet assigned. In this case we use the interpolating or the extrapolat-

ing procedure without the indicated correction for the first two steps.

The described procedure converged very rapidly in all the

examples that were calculated. With the requirement of O.l-percent

accuracy, six iteration steps were sufficient in average.
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APPENDIX B. BALGOL TEXT OF THE COMPUTER PROGRAM FOR THE DC STATES

The complete text of the described computer program in symbolic

language is reproduced on pages 99 through i06. The program was

written in BALGOL_ which is the Stanford version of ALGOL 60.
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COMMENT ---MOST OF THE IDENTIFIERS USED IN THIS
PROGRAM APPEAR AS SYMBOLS IN THE PAPER. FOR THEIR

DEFINITION CONSULT THE REPORT .
DEFINITION OF NEW VARIABLES --

ACURACY = THE PERCENTAGE ERROR ALLOWED IN THE

CALCULATION OF SEPARATION LENGTH,

ACCY = 0.1.ACURACY •
CSTE = ALPHAE.EXP( BETAE.ETAMIN l •

CSTI = ALPHAI.EXP( BETAI.( ETA2 - ETAMAX) ) •

CURRENT = CURRENT/AREA FLOWING THROUGH THE DIODE •

ERROR = PERCENTAGE ERROR COMITTED IN THE LAST

STEP OF THE ITERATION PROCESS •

MRATIO = MASS OF ELECTRONS/MASS OF IONS •

NO = NUMBER OF INTERVALS FOR INTEGRATION •

POSMAX = THE DISTANCE BETWEEN THE ION EMITTER
AND THE POSITION OF MAXIMUM POTENTIAL •

POSMIN = THE DISTANCE BETWEEN THE ELECTRON

EMITTER AND THE POSITION OF

MINIMUM POTENTIAL •

VMAX = THE MAXIMUM POTENTIAL IN THE DIODE •

VMIN = THE MINIMUM POTENTIAL IN THE DIODE • $

PROCEDURE GNEG( X ) $

BEGIN

EITHER IF X LEQ 0.0 $
GNEGC} = 1.0 $

OR IF X LSS 2.0 $
GNEGI) = 1.0 + X.(l.O+X.(O.5+X.lO,16666667+X.lO.0416666

X.(O.OO83333333+O.OO3473606.X}))) - SQRT(XI.

(0.7522528+X.(O.30090II2+X.(O.O85971748+X.

(0o019104833+X.(0.00_473606+0,0018228038oX_)

OR IF X LSS 500.0 $
BEGIN

Y : l.O/X $
GNEG() : SQRT(X).(I.1283792+Y.(O.56418957-Y.(0.282094

Y.(0.42314218 - 0.42740262.Y)))) $

ENDS
OTHERWISE $

GNEG() = 1.1283792.SQRT(X) $
RETURN

END GNEG() $

PROCEDURE GPOS(X) $

BEGIN

EITHER IF X LEQ 0.0 $

GPOS() = 1.0 $

OR IF X LEO i0.0 $

GPOS() : 2.0.EXP(X) - GNEGIX) $
um Ir X L_ _ ....

GPOS() = 2.0.EXPIX) $

OTHERWISE $
GPOS() = 1.0"'38 $
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RETURN
ENDGPOS() $

COMMENT --- THE FOLLOWING FUNCTIONS ARE THE INTEGRANDS

FOR THE THREE REGIONS RESPECTIVELY ,

I SEE EQUATIONS 36, AND 37, ) $

FUNCTION

REGIONIIETA} = I.O/SQRT( CSTI.GNEG(BETAI,IETAMAX-ETA))
CSTE.GPOSCBETAE.(ETA-ETAMIN))+GAMMA) $

FUNCTION
REGION2(ETA) = 1.0/SQRT( CSTI.GNEG(BETA!.(ETAMAX-ETA))

CSTE.GNEGCBETAE. IETA-ETAMIN))+GAMMA) $

FUNCTION

REGION3(ETA) = 1.0/SQRT( CSTI.GPOSCBETAI.CETAMAX-ETA))
CSTE.GNEG(BETAE. CETA-ETAMIN))+GAMMAI $

PROCEDURE INT( N , A , B$$ F() ) $

BEGIN
COMMENT --- THE INTEGRAL OF F(X) FROM A TO B IS DIVIDED

INTO N EQUAL INTERVALS • THE CORRECTED

GAUSS'S FORMULA IS USED FOR THE N

INTERVALS $

INTEGER N , K $
H = (B - A)/N $

SUM = 0 $
FOR K = ll , 1 , N ) $

SUM : SUM + O,15128136,(F(A+H,IK-O,96898593)) +

FIA+H,(K-O°03101407))) +
,69743728,F(A+H,IK-O,5)) $

INT() = H,SUM $
RETURN

END INT() $

SUBROUTINE CORRECT $

BEGIN
EITHER IF YTRY LSS YO $

BEGIN
Y3 = YI $

Y1 = YTRY $

X1 = XTRY $

EITHER IF ( Y2 EQL 0°0 ) AND C Y3 EQL 0.0 1 $

XTRY = XI°Y0/Y1 $
OR IF Y2 EQL 0.0 $

XTRY = ( XI°YO°(Y0-Y3))/ ( YI.CYI-Y3}) $

OTHERWISE $

XTRY = O°5.CXI+X2+((X2-XI)°(YB-Y1)°

(2°O,YO-YI-Y2)IIIIY3-YO).IY2-YI))) $
END $

OR IF YTRY GTR YO $
BEGIN

Y3 = Y2 $
Y2 = YTRY $
X2 = XTRY $
EITHER IF Y3 EQL 0°0 $

XTRY = Xl +((YO-Y1)°IX2-X1)I/IY2-Y1) $
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OTHERWISE $

XTRY : 0.5,(XI+X2+((X2-XI).(Y3-Y2),

(2.0.Y0-YI-Y2))/| (Y3-YO).(Y2-YI))) $

END $

OTHERWISE $

RETURN $

RETURN

END CORRECT $

COMMENT --- THE CONTROL DATA .

NO = NUMBER OF SUBDIVISIONS IN THE INTEGRAL

PROCEDURE I
ACURACY = MAXIMUM PERCENTAGE ERROR IN THE

CALCULATED SEPARATION LENGTH WHEN

COMPARED TO THE GIVEN LENGTH. XI2,

ACCY = MAXIMUM ERROR FOR THE ITERATING

STEPS WHICH DETERMINE ETATMIN $
INTEGER NO $

READ ($$ CONTROL ) $

INPUT CONTROL( NO , ACURACY ) $

ACCY = O,I.ACURACY $

START..

READ ($$ DATA) $

INPUT DATA( JSE,JSI,TEtTI,V2,D,MRATIO ) $

WRITE ($$ INOUT,FMOUT ) $

OUTPUT INOUT(JSE,JSI,TE,TI,V2,D,MRATIO ) $

FORMAT FMOUT(B20,_THE PARAMETERS OF THE DIODE *,W2,

B7,*JSE*,BII,*JSI*,BI2,*TE*,BI2,*TI*,B12,*V2*,

BI3,*D*,BII,*ME/MI*,W2, 7FI4.5,W2 ) $

NORMALIZE..

COMMENT --- THE NORMALIZED PARA_ETERS OF THE

DIODE ARE CALCULATED $

ALPHAE = JSE/( JSE + JSI.SQRTITI/(TE.MRATIO))} $

ALPHAI = 1.0 - ALPHAE $

BETAE = TI/(TI.ALPHAE + TE.ALPHAI) $
BETAI = BETAE,TE/TI $

ETA2 = 11605,0.V2/( BETAE.TE ) $

XI2 = 9.19286*_5.D.SQRT(JSE.SQRT(TE)+JSI.SQRT(TI/

MRATIO) )/( BETAE,TE) $

TRANSITION,,

COMMENT --- EQU, 46 AND 47 ARE CALCULATED FIRST $

QE = ALPHAE,( GNEGIBETAE.ETA2) - 1,0 ) $

QI = ALPHAI,C GNEG(BETAI,ETA2) - 1,0 ) $

IF ETA2 EQL 0,0 $

BEGIN

COMMENT --- TAKE THE LIMIT $

QE = ALPHAE.BETAE $

QI = AI m_AI._FTAI &

END $

EITHER IF QE GTR QI $

BEGIN
COMMENT THE DIODE IS ELECTRON-RICH $

XIAC = XIAD = XICD = 0.0 $
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GAMMAMIN = - ALPHAE - ALPHAI,GNEG( BETAI.ETA2 ) $

GAMMA = GAMMAMIN $

IF ETA2 EQL 0.0 $

GAMMA = 0.0 $

ETAMIN = 0.0 $

ETAMAX = ETA2 $

CSTE = ALPHAE $

CSTI = ALPHAI $
XIAB = INT( NO , 0.0 , ETA2 $$ REGION2() ) $

EITHER IF ALPHAI EQL 0.0 $

BEGIN

XIBD = 1.1,X12 $

ETATMIN = ETA2 $

END $

OTHERWISE $

BEGIN

ETAT = ETA2 $
IF ( BETAE,ETAT LSS 1.0"*-7 )

OR ( BETAI,ETAT LSS 1.0"*-7 ) $

ETAT = 1.0**-6/BETAE + 1.0_*-6/BETAI $

ETATRY = ETAT + 2,O.ACCY.(ETAT - ETA2) $

_NTIL ABSIETATRY - ETAT) LSS ACCY.IETAT - ETA2) $

BEGIN

COMMENT --- SOLVING FOR ETAT BY ITERATION $

ETATRY = ETAT $

ETAT = ETA2 + LOG(IALPHAE.( GNEG( bETAE.

ETATRY) - 1.0))/(ALPHAI°( GNEG(

BETAI.ETATRY I - 1.0 )))/BETAE $

END $
ETATMIN = ETAT $

ETAMAX = ETA2 $

ETAMIN = ETA2 - ETAT $

CSTE = ALPHAE,EXP(BETAE,ETAMIN| $

GAMMA = - MIN( (CSTE + CSTI.GNEG(_ETAI.ETAT)) ,

(CSTE°GNEG(BETAE°ETAT) + CSTI )} $

XIMIN = - INT( NO , 0.0 , ETAMIN $$ REGION1() ) $

XIBD = XIMIN + INTINO,ETAMIN,ETA2 $$ REGION2() ) $

END $
END $

OR IF QI GTR QE $

BEGIN

COMMENT --- THE DIODE IS ION-RICH $

XIAB = XIBD = XIAD = 0,0 $

GAMMAMIN = - ALPHAE,GNEG( BETAE,ETA2} - ALPHAI $

GAMMA = GAMMAMIN $

IF ETA2 EQL 0°0 $
GAMMA = 0,0 $

ETAMIN = 0,0 $

ETAMAX = ETA2 $
CSTE = ALPHAE $

CSTI = ALPHAI $

XIAC = INT( NO , 0°0 , ETA2 $$ REGION2() ) $
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EITHER IF ALPHAE EQL 0.O $

BEGIN
XICD = I,I,XI2 $

ETATMIN = ETA2 $

END $

OTHERWISE $

BEGIN

ETAT = ETA2 $

IF ( BETAE.ETAT LSS i°0"*-7

OR ( BETAI.ETAT LSS I.0"*-7 ) $

ETAT = I°0**-6/BETAE + I.O**-6/BETAI $

ETATRY = ETAT + 2,0,ACCY,(ETAT - ETA2) $

UNTIL ABS(ETATRY - ETAT) LSS ACCY.(ETAT - ETA2) $

BEGIN

COMMENT --- SOLVING FOR ETAT BY ITERATION $

ETATRY = ETAT $

ETAT = ETA2 + LOG((ALPHAI°( GNEG( BETAI.

ETATRY) - 1.0))/( ALPHAE.( GNEG(

BETAE.ETATRY ) - I°0 }))/BETAI $

END $

ETATMIN = ETAT $

ETAMAX = ETAT $

ETAMIN = 0°0 $
CSTI : ALPHAI°EXP( BETAI.( ETA2 - ETANAX )) $

GAMMA = - MIN( (CSTE + CSTI°GNEG( BETAI°ETAT)) ,

(CSTE.GNEG(BETAE°ETAT) + CSTI )) $

XIMAX : - ]NT( NO,ETAMAX,ETA2 $$ REGION3() ) $

XICD : XIMAX + INT( NO,0.O,ETAMAX $$ REGION2() ) $

END $

END $

OTHERWISE $

BEGIN

COMMENT --- THE DIODE IS NEUTRAL $

XIAB : XIBD : XIAC = XICD = 0,0 $
GAMMAMIN = - ALPHAE - ALPHAI.GNEG( BETAI.ETA2 ) $

GAMMA : GAMMAMIN $

IF ETA2 EQL O.0 $

GAMMA = 0°0 $

ETAMIN = C,0 $

ETAMAX = ETA2 $
ETATMIN = ETA2 $

CSTE = ALPHAE $

CSTI = ALPHAI $

XIAD = INT( NO,0,O,ETA2 $$ REGION2() ) $
END $

WRITE ($$ OUTTRANS , FTRANS ) $

OUTPUT OUTTRANS I XIAB,X!AC:X!BD,X!£_XIAD,XI2) $

FORMAT

FTRANS( B10,*THE NORMALIZED TRANSITION LENGTHS*,

W4,B8 ,*XIAB*,BII,*XIAC*,BII,*XIBD*,B11,

*XICD*,B11,*XIAD*,W4_SF15,5,W2,
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BIO,*THE NORMALIZED SEPARATION LENGTH*,

* XI2 = *_ F20.5 ,W2 , W2 ) $

COMPARE..

COMMENT --- THE NEXT STEP IS THE DETERMINATION OF THE

TYPE OF THE POTENTIAL SOLUTION $

XIAMAX : XIAB + XIAC + XIAD $

XIDMIN : XIBD + XICO + XIAD $

EITHER IF XI2 LEQ XIAMAX $

BEGIN

WRITE ($6 LINEA ) $

FORMAT LINEA(B20,*THE SOLUTION IS TYPE A*,W2 ) $

GO TO TYPEA $

END $

OR IF XI2 GEQ XInMIN $

BEGIN

WRITE C$$ LINED ) $

FORMAT LINED(i_20,*THE SOLUTION IS TYPE D *,W2) $

GO TO TYPED $

END $

OR IF XICD EQL 0.0 $

BEGIN

WRITE ($$ LINEN ) $

FORMAT LINEB(n20,*THE SOLUTION IS TYPE _*,W2) $

GO TO TYPEB $

END $

OTHERWISE $

BEGIN

WRITE ($$ LINEC ) $

FORMAT LINEC(B20,*THE SOLUTION IS TYPE C*,W2) $

GO TO TYPEC $

END $

COMMENT --- THE CALCULATION CF THE INSIDE PARAMETERS
FOLLOWS. THE LABELS CORRESPOND TO THE FOUR

TYPES OF POTENTIAL FUNCTIONS . TO TEST THE

ITERATING PROCL[)URE , THE R_SULTS CF THE

ITERATING STEPS ARE LISTED $
FORMAT ITHEAD (BIO,*DURING THE iTERATING PROCEDURE_9

* THE FOLLOWING STEPS WERE TALEN*,W2)$

OUTPUT ITEROUT ( YTRY t Y0 ) $

FORMAT FMITER( B30,*THE TRIAL VALUE_,B$O,
THE SOLUTION *_W ,2_0,F12.5,B[2_

FI3.5,W ) $

TYPEA..

ETAMIN = 0,0 $

ETAMAX = ETA2 $

XIMIN = 0.0 $

XIMAX = 0.0 $

CSTE = ALPHAE $

CSTI = ALPHAI $

Y0 = X12 $

XTRY = (XI2-2 )/( (XI2 - XIAMAX)*2,SQRT(ETA2) ) $

X1 = X2 = Y1 = Y2 = Y3 = 0.0 $

ERROR = I.I.ACURACY.XI2 $
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WRITE( $$ ITHEAD} $

UNTIL ERROR LEQ ACURACY.XI2 $

BEGIN

GAMMA = 1.0/XTRY + GAMMAMIN $

YTRY = INT( NO,0.O,ETA2 $$ REGION2() ) 5

ERROR = ABS( YTRY - XI2 ) $
WRITE ( $$ ITEROUT,FMITER ) $

ENTER CORRECT $

END $
GO TO FINAL $

TYPEB..
ETAMAX = ETA2 5

CSTI = ALPHAI $
XIMAX : 0.0 5

YO = XI2 - XIAMAX 5
XTRY = ETATMIN - ETA2 $

IF XTRY EQL 0,0 $
XTRY = LOG( 1,1 + XI2 ) / 0,5,BETAE $

X1 : X2 : YI : Y2 : Y3 : O,0 $
ERROR = 1,I,ACURACY,XI2 5

WRITE( $5 ITHEAD) $
UNTIL ERROR LEQ ACURACY,XI2 $

BEGIN

ETAMIN = - XTRY $

CSTE = ALPHAE.EXP( BETAE.ETAMIN ) $

GAMMA = - CSTE - CSTI.GNEG(BETAI.(ETA2-ETAMIN}) $
XIMIN = -INT( NO,O.O,ETAMIN $$ REGIONI(I ) 5

YTRY = XIMIN - XIAMAX +
INT(NO,ETAMIN,ETA2 $$ REGION2() } $

ERROR = ABS( YTRY + XIAMAX - XI2 ) $

WRITE ( $$ ITEROUT,FMITER ) $

ENTER CORRECT $

END $

GO TO FINAL $

TYPEC..
ETAMIN = O,0 $

CSTE = ALPHAE $

XIMIN : 0.0 $
YO = XI2 - XIAMAX $
XTRY = ETATMIN - ETA2 $

IF XTRY EQL 0,0 $
XTRY = LOG( 1.1 + XI2 ) / 0.5,BETAI $

X1 : X2 : Y1 : Y2 : Y3 : O,0 $
ERROR = 1,I,ACURACY,XI2 $

WRITE( 55 ITHEAD) $

UNTIL ERROR LEQ ACURACY.XI2 $
BEGIN

ETAMAX = XTRY + ETA2 $

CSTI : ALPHAI.EXP( -6ETAI.XTRY ) $
GAMMA = - CSTI - CSTE.GNEG( BETAE.ETAMAX ) $

XIMAX = -INT( NO,ETAMAX,ETA2 $$ REGION3() ) $
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YTRY = XIMAX - XIAMAX +

INT(NO,0.O,ETAMAX $$ REGION21) ) $

ERROR = ABS( YTRY + XIAMAX - XI2 ) $

WRITE ( $$ ITEROUT,FMITER ) $

ENTER CORRECT $

END $

GO TO FINAL $

TYPED..

Y0 = XI2 - XIDMIN $

XTRY = LOG( I.l + YO ) $

XI = X2 = Y! = Y2 = Y3 = 0.0 $

ERROR = I,I.ACURACY.XI2 $

WRITEi $$ iTHEAD) $

UNTIL ERROR LEO ACURACY.XI2 $

BEGIN

ETAT = ETATMIN + XTRY $

ETAMAX = ( BETAE.ETAT+BETAI.ETA2-LOG( (ALPHAE.(

GNEGIBETAE.ETATI-I.O))/IALPHAI.IGNEG(

BETAI.ETAT)-I.01) ))/(BETAI + BETAE) $

ETAMIN = ETAMAX - ETAT $

CSTE = ALPHAE.EXPI BETAE.ETAMIN ) $

CSTI = ALPHAI.EXP( BETAI.(ETA2 - ETAMAX) ) $

GAMMA = - MINI(CSTE+CSTI.GNEG(BETAI.ETAT)),

(CSTE.GNEG(bETAE.ETAT)+CSTI} 1 $

XIMIN = -INTI NO,O.O,ETAMIN $$ REGION1() ) $

XIMAX = -INTI NO,ETAMAX,ETA2 $$ REGION3() ) $

YTRY = XIMIN + XIMAX - XIDMIN +

INT( NO,ETAMIN,ETAMAX $_. REGION2() ) $

ERROR = ABS( YTRY + XIDMIN - XI2 ) $

WRITE ( $$ ITEROUT,FMITER ) $

ENTER CORRECT $

END $

GO TO FINAL $

FINAL..

COMMENT --- THE DESIRED OUTPUT OATA ARE CALCULATED .

HERE WE CALCULATE THE POTENTIAL MINIMUM AND

MAXIMUM , THEIR POSITION , AND THE CURRENT

DENSITY IN THE DIODE $

VMIN = ETAMIN.BETAE.TE/11605.0 $

VMAX = ETAM&X.RFTAE.TF/I]605.0 $

POSMIN = XIMIN.D/XI2 $
POSMAX = XIMAX.D/XI2 $

CURRENT = JSE.EXP( #ETAE.ETAMIN ) +

JSI.EXP( BETAI.( ETA2 - ETAMAX ) ) $
WRITE ( $$ RESHEAD ) $

FORMAT RESHEAD ( W2,B20,*THE CALCULATED RESULTS*,

ARE THE FOLLOWING*,W2 ) $
WRITE ( $$ RESULT,FMRESULT ) $

7

OUTPUT RESULT(VMIN,POSMIN,VMAX,POSMAX,CURRENT) $

FORMAT FMRESULT(B5,*POT.MINIMUM (VOLTS) *,

*X.MINIMUM (CM) POT.MAXIMUM (VOL_S) *,

*X.MAXIMUM (CM) J/DIODE (AMP/SOCM)* , W2 ,

5F20o5 ,W1 ) $

GO TO START $

FINISH $
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APPENDIXC. FINDINGTHETRANSITIONLENGTH
OFANYOPPOSITE-STREAMDIODE

The seven diagrams presented on pages 107 through 110 give the

transition length _D as a function of the variables 5, 6, _2"
min

These variables and _2 are determined from the parameters of the

diode. From 5, 6, _2' with the help of the following diagrams, the

value of _D can be found. The largest odd-integer number, which
min

is still less than the ratio _2/_ D , is the maximum number of half-
min

periods that a periodic solution can contain in the diode.

If _2/_ D < 3, no periodic solution is possible.
min

parameters 1.0/6 and 1.0/5 are used in place of

to find _D
min

For _ > 1.0, the

and _ in order
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APPENDIX D. COMPUTER PROGRAM FOR THE SIMULATION OF THE OPPOSITE-

STREAM PLASMA DIODE

The basic principles in the simulation of the opposite-stream

plasma diode by a computer were discussed in Chapter V. We are concerned

here with incorporating these basic procedures into an accurate and

fast computer program written specifically for the IBM 7090 computer.

It is assumed that the reader is familiar with the facilities of this

computer and with binary-integer arithmetic in general.

We used physical quantities in Chapter V to describe the computer

model of a one-dimensional plasma. In order to deal with this problem

on the computer it is necessary to normalize these quantities. The

symbols in the following normalization procedure refer to the dc para-

meters of the diode defined in Chapter Ill and to the parameters of the

computer program discussed in Chapter V.

I. The Normalization Procedure

For their easier identification, the variables and the constants

of the computer program will be represented by capitalized words.

Naturally, these quantities are dimensionless.

Position in the diode (POS) is measured from the electron emitter

(left boundary plane), it is represented by an integer, and is normalized

in such a manner that the position at the right boundary plane is 234 .

The relation between POS and the real position in the diode (x) is

given by:

POS = 234 x (D.I)

_2 i

_With the characteristic temperature of the diode

velocity v is defined by the following relation:

_, a characteristic

v-V < (D.2)

- iii - SEL-64-012



where k is Boltzmann's constant and m is the mass of the electrons.
e

Time is normalized by this velocity and the characteristic Debye length

of the diode, _. The relation between the normalized time (TAU) and

real time t is then:

TAU = v_t (D.3)

h

Normalized velocity in the computer (VEL) is defined by the first

POS

difference of position and of time, i.e., by VEL - A TAU Substitut-

ing Eqs. (D.I) and (D.3) into this relation, we get the following

equation between normalized and real velocities:

234 v (D.4)
VEL - _2

where v represents velocity in physical units.

We showed in Chapter V that the electron sheets are injected

according to the distribution law

1

2kT \ _ 4- log Rroe = -_e e)

where R is a random variable uniformly distributed in the unit

interval. Consequently, the normalized injected velocities of the

electron sheets (VELOE) follow the distribution law:

234

VELOE - V- log R (D.5)

The injected velocities of the ion sheets in normalized form

(VELOI) are distributed similarly as

N
_2

(D.6)

where R is again a random variable uniformly distributed in the unit

interval.
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The charge-to-mass ratio of an electron sheet is normalized to
unity in our computer program. This means that the acceleration of

the electron sheet (ACCE) is numerically equal to the negative of
the electric field. The normalized value of the electric field will

be represented by EFLD. In mks units the acceleration of an electron

sheet (ae) is given by the expression:

e (D.7)a - E
e m

e

-19
where e is the electronic charge, 1.6 x i0 coulombs and E is

the electric field in mks units. Since acceleration is the first

difference of velocity divided by the first difference of time in both

the physical and the normalized systems, an expression between the

normalized electric field and the real electric field (E) can be

derived, yielding the expression

234 _ e
EFLD - E (D. 8)

_2 me

The electric field that is due to the externally applied potential

(V2) is E 2 and is given by Eq. (66). This quantity can be expressed

in the normalized form (EFLD2) in terms of q2 as follows

233

EFLD2 - 2 q2 (D.9)

The contribution to the electric field of the sheets in the diode

(El) can be expressed in normalized form if it is known how much change

occurs in the normalized electric field when a sheet is crossed. The

change in the actual field (_E) is

AE - 0- (D.IO)

eO

where ff is equal to the coulombs-per-area surface charge that a sheet

represents. This factor, if, is a function of the number of electron
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sheets injected per second. This electron-sheet injection rate is a

parameter of the computer diode and it is more convenient to represent

it by the numberof electron sheets that are injected during a unit
normalized time. Wecall this parameter F , or GMME.The saturatione
current density of the electron emitter (Jse) is equal to the product
of _ and the numberof electron sheets injected per second. Chang-

ing the time scale to normslizpd lime snH ,,c_g Eq. (D. In__............... _v] to express

_, we obtain J in the following form:se
m

j =--vc 0 (GMME) (D.1I)
se

In Eq. (15), J
se

tion of the characteristic constants of the diode (N,T)

expression, it becomes:

j _ Ne ki2 _

se (_ _e me
e

is given by a different expression. After introduc-

into this

(D. 12)

The right-hand sides of Eqs. (D.12) and (D.11) are equated and AE is

expressed as a function of the dc parameters of the diode and of GMME.

The parameter AE is the change in the electric field that we were

looking for. This change can be expressed in a normalized form (DEFD)

by using Eq. (D.8). The resulting expression is

232
DEFD = (D.13)

x_ C_e _ GMME

Since the ion sheets are carrying the same amount of surface

charge as the electron sheets (with a different sign, naturally), the

injection rate of the ion sheets depends on the injection rate of the

electron sheets through the dc parameters of the diode. If we call

the number of injected ion sheets per unit normalized time GMMI, it is

given by the relation:

GMMI = GMME i i e (D.14)

a _e me i
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Wehave expressed all the constants that are necessary for the

calculation of the characteristics of the computer diode in terms of

the normalized dc parameters of the diode. The size of the time step

AT, or DTAU,was not included amoungthese constants because it is an
independent parameter of the computer model and does not influence

the constants. The constants and parameters of the diode are collected
in Table 3 for reference.

2. Variables of the Computer Program

Strictly speaking, the variables of the computer program are only

the positions and the previous change of positions of the sheets. All

other quantities in the diode are determined from these variables. It

is convenient, however, to select still other quantities in the program

and consider them also as variables partly because of their physical

significance (potential, current, etc.) and partly because of their

roles in computing the characteristics of the diode. Most of these

variables are collected into arrays. These arrays will be identified

by capitalized words, and lower case subscripts will show their particular

elements.

The positions and the previous changes in the positions of the

sheets are placed into two arrays (POSn, DPOSn). The sign of POS n

shows whether the nth elements of POS and DPOS arrays belong
n n

to an electron sheet (POS _ 0) or to an ion sheet (POS _ 0). Place
n n

is reserved in the computer's memory for i0,000 elements of both arrays.

It was shown in Chapter V that it is sufficient to record the

values of the electric field only at prescribed points in the diode.

These points are the midpoints of the segments which divide the diode

space into 1024 equal intervals. In order to identify them, these

segments are nLtmb_red starting--for reasons that will be clear later--

with the number O. Hence, the segment that is nearest to the electron

emitter is signified by the number 0, the next segment to the right

corresponds to number i, and so forth. The last segment, i.e., the

segment nearest to the ion emitter, receives the number 1023. The

values of the electric field at the midpoints of these segments then

can be collected into a field array (EFLDk) whose index number runs
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TABLE4. CONSTANTSANDPARAMETERSOF THECOMPUTER-SIMUIATEDDIODE

Normalized dc parameters of
the diode

Parameters of the computer model

Resulting normalized constants
of the computer diode:

Length of the diode

Injection rate of ion sheets

Injection velocities of
electron sheets

Injection velocities of
ion sheets

Electric field due to applied
potential

Acceleration of an electron
sheet

Acceleration of an ion sheet

Changeof electric field
across a sheet

DTAU,GMME

234

GMME

234
VELOE- d- log R

 24%e

234 m_i
VELOI - _- log R

EFLD2 -
233

2T12

_2

ACCE = - EFLD

m

ACCI = e EFLD
m.

I

DEFD =
232

%/_- O_e _ GMME _2
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from 0 to 1023. Actually, it is more convenient to keep a record of

the changes in DPOS of the sheets during a time step (these quantities
n

are proportional to the field values). For the electron sheets, the

field values are multiplied by -(_T)2; for the ion sheets the multiply-

ing factor is (me/mi). (_)2. Two arrays with 1024 elements are needed

to store the resulting quantities (DDPEk, DDPIk). the subscripts of

these two arrays take the integer values of 0,1,2,...,1023.

The potential as a function of distance is calculated from the

field by integration. Since the field varies linearly in each segment,

this integration becomes a simple summation--though this introduces a

slight inconsistency since the values of the potential are given at

the boundary and not at the midpoints of the segments. Consequently,

the potential array (POTk) has an index that is running from 0 to

1023 also, but the values of the potential refer to the right boundary

points of the segments that the index numbers signify. The values of

the potential are given in their dc normalized form, hence POT1023 is

always equal to _2"

There are a few single variables in the program, i.e., the current

through the diode (CURR), the total number of sheets in the diode

(NTOT), and the number of ion and electron sheets that leave the diode

during a particular time step (ILEFT,ELEFT) at the plane of the

electron emitter.

Naturally, all the variables are functions of the normalized time,

or what is more appropriate in the computer program, functions of the

number of time steps (TCOUNT) counted from some reference time. The

methods of computing these variables are discussed in the following

sections in the order that they appear on Fig. 12.

3. Moving the Sheets _'-_ _ T_m_ Rt_p

It is assumed that we know the state of the diode at the end of the

time step TCOUNT, i.e., the positions and the previous changes in the

positions of the sheets are given, and the elements of DDPE k and DDPI k

have also been determined according to the distribution of the sheets

in the diode (see Sec. 5). We want to calculate the positions of the

sheets at the end of the next time step and then increase TCOUNT by one.
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If POS(new) < -234 or > 0, it has left the diode space at the ion
n -- --

emitter or at the electron emitter respectively and the position of

the sheet is set equal to zero. The value of ELEFT is set equal to
the total numberof electron sheets that leave the diode at the electron

emitter during this time step.

4. Injecting New Sheets

The distribution laws for the injected velocities of the ion and

electron sheets are given in Table 3. According to these expressions

the square root of the natural logarithm of a number (R) has to be

calculated for each injected sheet. This number R is given as a

35-bit binary number, hence it could have any one of the 235 -i

values that are between 0 and 235 . Accordingly, there are 235 -i

possible velocity values one of which is assigned to an entering sheet.

Since the computer model can handle only i0,000 sheets at a time, it is

not necessary to keep such a large variety of velocity classes. The

computer results are hardly affected if the number of possible initial

velocities is limited to 210 = 1024, for example, in which case the

possible velocity values can be calculated at the beginning of the

computations and stored for future reference.

We used the latter method, for it saved us considerable computer

time. The uniformly distributed random number R was calculated as

before (see Chapter V). It was considered as an integer and was shifted

right 25 places. The resulting integer, R', could have values of

0,1,2,...,1023. These values occurred in a random manner, and each was

equally probable. The number R' was used, then, to indicate the

element of an array in which the calculated velocity values were stored.

In the actual calculations we were not interested in the initial

velocities of the injected sheets directly, but rather in the position

and previous change in the position of each injected sheet. Equation

(59) in Chapter V shows how to calculate these quantities from the

initial velocity of the injected sheet and from the acceleration that

acts on the sheet in the neighborhood of the emitter. It is convenient

to calculate the initial changes in the positions of the sheets INDPE

for the electrons and INDPI for the ions. These changes are given
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For these calculations we take the positions of the sheets (POSn)one
by one and test each for sign.

If POS > O, this element of the array represents an ion sheet.
n

The value of the position, an integer number between 0 and 234 ,

determines the segment to which this sheet belongs. The segment number

is determined by shifting POS to the right with 24 places. The
n

resulting integer (we call it KIND) can have values of 0,1,2, .... 1023

and corresponds to the segment number of the sheet. Hence, DDPIKIND

gives the change in the value of DPOS for this time step. The new
n

position and the change in the position of this sheet are

DPOSn(new) = DPOSn(Old) + DDPIKIND

POS (new) = POS (old) + DPOS (new)
n n n

(D. 15)

where KIND is the integer number that results by shifting right

POS (old) 24 places. The new position of the ion sheet is tested to
n

determine whether it is still located in the diode space. If

POS (new) > 234 the sheet has left the diode at the ion emitter; if
n -- '

POS (new) < 0, it has passed the plane of the electron emitter. In
n

both of these cases the position of the sheet is set equal to zero,

hence it is ignored until the position of a new sheet is placed in

this element of the array during the injection of new sheets. The

value of ILEFT is set equal to the total number of ion sheets that

leave the diode space at the electron emitter during this time step.

If POS < 0, corresponding calculations are made for an electron
n

sheet. The index number KIND is determined from the absolute value

of POS (which is the actual position of the electron sheet) by the
n

same shifting operation as before. The new values of DPOS and POS
n n

are calculated by the following expressions.

DPOSn(new ) = DPOSn(Old ) + DDPEKIND

POSn(new ) = POSn(Old ) - DPOSn(new)

(D.16)
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simply as the product of the initial velocity of the sheet and the length

of the time step (DTAU).

In order to simulate the half-Maxwellian velocity distribution of

the injected sheets by 1024 values, we have divided the unit interval

into 1024 equal segments and calculated the velocities that corresponded

to the midpoints of these segments. These segments were numbered from

0 to 1023, hence the midpoints of the segments could be represented by

the expression (1/2048 + r/i024) where r was the segment number.

The corresponding velocity values were multiplied by DTAU and then

stored in two arrays (INDPEr, INDPI ) whose indices also ran fromr

0 to 1023. The elements of these arrays were calculated by the follow-

ing expressions:

(D.17)

for r = 0,1,2,...,i023

Injecting a sheet in the diode started with the calculation of a

number from the random sequence R. The new random number R' was

calculated from R by the shifting operation described above and then

used as the index number for one of the arrays in Eq. (D.17). The

procedure was slightly different for ion and electron sheets.

If an electron sheet was injected, it started at the electron

emitter (POS = 0) with positive velocity and with negative position.

The expressions for the position and change of position of the injected

electron sheet were then:

(1 1 )POS = - _ INDPER, + _ DDPE 0

DPOS = INDPER,

(D.18)
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since the term a0 (_T)2 in Eq. (59) is given simply by the first

element of the DDPEk array.
If an ion sheet was injected, it started at the ion emitter

(POS= 234) with negative velocity and its position had to be counted

from the ion emitter. Consequently, the following expressions were used

for an injected ion sheet.

1 1
POS= 234 - (_ INDPIR, + _ DDPII023 )

DPOS = - INDPIR,

(D.19)

We can see from Eq. (D.18) and Eq. (D.19) that the effect of large

retarding fields at the emitters could return the injected sheets to

their respective emitters. In these cases the positions of these

returned sheets were set equal to zero and they were ignored in the

same manner as those which left the diode space during the moving of the

sheets.

5. Calculating the Elements of the Arrays DDPI k and DDPE k

The kth element of the arrays DDPI and DDPE k are proportionalk

to the value of the electric field at the midpoint of the kth segment

in the diode. (The segment number k can have values of 0,1,2,...,1023).

The electric field in the diode is determined from the combined effects

of the sheets in the diode and of the applied potential (_2). The

potential _2 contributes a constant value (EFLD2) to the total

electric field, hence the same value is added to the field in each

segment.

The contribution of the sheets to the total electric field (EFLDI)

is determined from the positions of the sheets with the conditlon:

4 EF 01(P0s)d(P0S) = 0
0

(D.20)
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Since the values of the electric field (EFLDIk) are given at the

midpoints of the segments and the field is a linear function of position

in each segment (see Fig. llb), the integral of Eq. (D.20) becomes a

summation. This gives the condition:

1023

EFLDI= 0
k

k=O

Let us suppose that we know the total change of the electric field

across each segment (TDEFD). Then the calculation of the values of
k

EFLDI at the midpoints of the segments (EFLDIk) can proceed in two

steps.

First, we make the assumption that the field is zero at the plane

of the electron emitter (POS = 0). Since we know the change of the

electric field across each segment, the values of the field at the

midpoints can be calculated--although these values will not be equal

to EFLDI k. In order to use corresponding symbols to those used in

Chapter V, we call this hypothetical field EFLDI', and call its values

at the midpoints EFLDI_. The following expression gives the values

of this field:

1

EFLDI_ = _ TDEFD 0
(D.22)

k-i

_=0

1

TDEFD_ + -_ TDEFD k

It was shown in Chapter V that EFLDI' and EFLDI differ only

by a constant and that this constant is equal to the average value of

the field EFLDI' over the diode space. Accordingly, the values of

EFLDI at the midpoints of the segments are as given by the following

relation:

1023

, 1 _ EFLDI_ (D.231
EFLDI k = EFLDI k 1024

k=O
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Combining the effects of the sheets and of the applied potential gives

the following relation for the total field in the diode:

EFLD k = EFLDI k + EFLD2 k
(D.24)

We showed in Sec. D.2 how the values of DDPI k and DDPE k were

related to the field. Substitution of these relations into Eq. (D.23)

gives the values for the arrays:

m

DDPlk = e EFLD k (DTAU)2
m.

I

DDPE k = - EFLD k (DTAU)2

(D.23)

Before showing how the values of TDEFD k are calculated from the

positions of the sheets, let us mention the fact that during the above

calculations we determined the value of TEFLDI at the electron emitter.

This term is important when we want to calculate the convective current

density in the diode (see next section). During these calculations we

determined the average value of EFLDI' over the diode space. Since

EFLDI' is zero at the electron emitter, and the total field, EFLD, is

equal to EFLDI' + EFLD2 minus the average value of EFLDI' every-

where in the diode, the value of the total field at the electron emitter

EFLD(POS = O) is given by

1023

i _ ELFDI_ + EFLD21024

k=0

 .FLD(mS= O) - (D.24)

The total change in the electric field across the kth segment

(TDEFDk) is caused by the sheets that are located in ...._,_= scgment. The

change of electric field across one sheet is given in Table 3. This

change is positive for an ion sheet and negative for an electron sheet.

For calculating the values of TDEFD k the following procedure is used:
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i. First the elements of TDEFD. are set equal to zero for all
values of k. Then we take tee positions of the sheets (POSn)
one by one and test each for sign.

2. If POS > O, an ion sheet is represented by this element of
the POSn array. The segmentnumber that corresponds to this
sheet i_ determined, as before, by shifting POS to the right
by 24 places. The resulting integer, KIND, is t_e numberof
the segment in which this sheet is located. The amount DEFD
is the change in the electric field across one sheet, hence we
add to the current value of TDEFDKINDthis amount.

3. If POS < O, an electron sheet has to be considered. The
index n_mber is determined from the absolute value of POSn
(which is the actual position of the electron sheet) and
then the amount DEFD is subtracted from the current value
of TDEFDKIND.

4. After all sheets have been considered, the accumulated change
in the electric field across the kth segment is given by
TDEFDk .

Wehave described the major loop of the computer program. At every

time step the sheets are moved, new sheets are injected, and the field
is calculated in the diode. After the field has been calculated, variables

of the program are printed out according to what output quantities are

needed. These outputs are discussed in the next section.

6. The Current in the Diode and Other Output Quantities

Current in the diode is normalized to the saturation current. If

the electric field is constant in time, the convection current in the

diode (ICONV) for a particular time step (TCOUNT) is given by the

following expression:

ELEFT - ILEFT - GMME

ICONV = (GMME + GMMI) DTAU

(D.25)

and GMMI are the electron and ion sheet injection rateswhere GMME

respectively, and the numerator gives the equivalent number of positive

sheets that crossed the plane of the electron emitter from left to right

during the normalized time interval DTAU. If the electric field is

changing in time, its contribution to the convection current has to be

calculated also at the plane of the electron emitter [see Eq. (72)]. We

have already shown that the value of EFLDI is determined at the plane

of the electron emitter (POS = 0) at each time step, hence the
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contribution of the electric field to the convection current at time

TCOUNT is proportional to the term:

EFLDI(POS = O, TCOUNT) - EFLDI(POS = O, TCOUNT - 1)

DTAU

The factor of proportionality can be calculated from the condition that

the convection current is constant in space, and we arrive at the

following expression for the normalized convection current:

i [ICONV(TCOUNT) - DTAU (GMME + C,MMI) ELEFT - ILEFT - GMME

EF_I(pOS = 0,TCOU_) - _Lm(POS = O, _OU_T - 1)]
+ DEFD ]

where DEFD is the change in the normalized electric field that occurs

when a sheet is crossed.

We have already shown the procedure for calculating the potential

as a function of position in the diode. The extrema of the potential

function can be found easily by looking for those places where the

electric field becomes zero.

These were the output quantities that we considered important for

our problem. Naturally, other quantities--such as the position of the

sheets, their velocity distributions at any point in the diode, or the

charge density along the diode--could also be extracted from the

computer program. These quantities are readily available during the

computer calculations and their discussion would be superfluous here.
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